跳到主要內容

簡易檢索 / 詳目顯示

研究生: 許哲叡
Che-Jui Hsu
論文名稱: 利用深共熔溶劑結合超音波輔助液液微萃取法檢測茶飲中的BTRs與BTHs殘留
指導教授: 丁望賢
Wang-Hsien Ding
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 90
中文關鍵詞: 深共熔溶劑苯並三唑苯並噻唑液液微萃取茶湯樣品
外文關鍵詞: Deep eutectic solvent, Benzotriazoles, Benzothiazoles, microextraction, tea samples
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究開發一種靈敏、簡單且對環境友善的方法檢測不同茶湯中的八種 Benzotriazoles (BTRs) 和 Benzothiazoles (BTHs)。茶湯樣品的前處理以深共熔溶劑結合超音波震盪進行液液微萃取。深共熔溶劑為一個合成快速,對環境友善、低揮發性的萃取劑,其中的氯化膽鹼具生物相容性。氯化膽鹼和 4−氯酚以莫耳數比 1 : 3 形成疏水性的深共熔溶劑萃取茶湯中的待測物,再以超高效液相層析高解析度串聯式質譜儀 (UHPLC−QTOF−MS) 進行分析。
    再最佳化時,以 Design expert 軟體進行最佳化模擬,首先以 Multilevel categoric design 進行種類實驗的最佳化,結果以深共熔溶劑比例1 : 3、萃取的機械力為超音波震盪、不冰浴直接離心,得到最佳回收率。接著,利用 Face-centered Central Composite Design 的多因子實驗設計和反應曲面法及多變量分析 (ANOVA) 進行各項變因的最佳化,結果以萃取劑的體積 800 μL、超音波溫度 55℃、超音波震盪的時間 5 分鐘為最佳回收率。接著離心之後利用甲醇定量至 1 毫升,最後取其中 2 μL 的樣品注入至 UHPLC−QTOF−MS。
    將本研究將開發的方法進行偵測極限 (LOD) 及定量極限 (LOQ) 的分析,得到的濃度分別介於 0.1 ~ 7.5 ng/mL 及 0.15 ~ 20 ng/mL 之間,再藉由 Inter−day 和 Intra−day 的測試精密度,相對標準偏差 (RSD) 皆小於16 %,說明此方法有良好的再現性。最後在茶湯中也成功測出茶中含 BTHs 的存在。


    In this study, a sensitive, simple and environmental−friendly method for the determination of eight Benzotriazoles (BTRs) and Benzothiazoles (BTHs) derivatives in tea beverages was developed. The target analytes were extracted from tea beverages using deep eutectic solvent−based ultrasound−assisted liquid−liquid microextraction (DES−USALLME). DESs are a group of novel “green” solvents, and the benefits of DESs include: starting materials are affordable, can be easily prepared at room temperature, have low or negligible toxicity, and can be tuned for hydrophobic or hydrophilic organic analytes. A hydrophobic DES was used in this study, which based on the mixture of choline chloride (as a hydrogen bond acceptor) and 4−chlorophenol (as a hydrogen bond donor) at molar ratio of 1 : 3. The determination of target analytes was performed by the combination of ultrahigh− performance liquid chromatography quadrupole time−of−flight mass spectrometry (UHPLC−QTOF−MS).
    The parameters of DES−USALLME were screened and optimized by multivariate experimental design base on Multilevel categoric design and Face-centered Central Composite Design plus with response surface design and analysis of variance (ANOVA), respectively. For Multilevel categoric design screening, the optimal selections were: molar ratio of DES was 1 : 3, the extraction mechanical force was ultrasonication, and no required ice bath after ultrasonication. Then, the optimal conditions for Face-centered Central Composite Design were: 800 μL of DES, and sonicated for 5 mins in ultrasonic bath at 55 ℃. After optimization, the method was validated and shown to possess low limits of quantification (LOQs) ranging from 0.15 to 20 ng/mL, high precisions (less than 16%) for both inter-day and intra-day analysis. The developed method was then successfully applied for the analysis of some selected BTRs and BTHs in tea beverages.

    目錄 第一章 前言 1 1−1 研究源起 1 1−2 研究目標 2 第二章 文獻回顧 3 2−1 綠色化學溶劑 3 2−1−1 離子液體的介紹 3 2−1−1−1 離子液體的起源 4 2−1−1−2 離子液體的性質 4 2−1−2 深共熔溶劑 5 2−2 分散液液微萃取 7 2−2−1 液液萃取的發展 7 2−2−2 分散液液微萃取 8 2−2−3 分散液液微萃取影響因素 9 2−2−4 分散液液微萃取法發展 10 2−2−5 深共熔溶劑結合超音波輔助液液微萃取法 12 2−3 超高效液相層析串聯質譜儀 13 2−4 待測物介紹 14 2−4−1 Benzotriazoles and Benzothiazoles 介紹 14 2−4−2 BTRs 及 BTHs 來源及生物影響 16 2−4−3 毒性研究 17 2−4−4 每日暴露量 18 2−4−5 相關規範 19 2−4−6 相關檢測文獻 19 第三章 實驗藥品、儀器與流程 23 3−1 實驗藥品與儀器 23 3−1−1 實驗藥品 23 3−1−2 實驗儀器與設備 24 3−2 實驗流程 25 3−2−1標準品配製 25 3−2−2 超高效液相層析串聯質譜儀參數設定 26 3−2−3 質量校正 28 3−2−4 真實樣品製備 29 3−2−5 深共熔溶劑的製備 30 3−2−6 萃取方法 31 第四章 結果與討論 33 4−1 待測物 UHPLC−QTOF−MS 的測定結果 33 4−1−1 層析圖圖譜 33 4−1−2 質譜圖圖譜 35 4−2 深共熔溶劑的探討 37 4−2−1 深共熔溶劑的選擇 37 4−2−2 深共熔溶劑的密度與黏度 37 4−2−3 深共熔溶劑FT−IR 圖譜 39 4−2−4 深共熔溶劑在 NMR 圖譜 40 4−3 單因子最佳化探討 42 4−3−1 深共熔溶劑的比例 42 4−3−2 深共熔溶劑的體積 43 4−3−3 鹽類對萃取的影響 44 4−3−4 萃取機械力對萃取的影響 45 4−3−5 超音波震盪水浴溫度對萃取的影響 46 4−3−6 超音波震盪時間對萃取的影響 47 4−4 實驗設計探討 48 4−4−1 Multilevel categoric design 48 4−4−2 半常態描點圖 50 4−4−3 ANOVA 分析 51 4−4−4 顯著變因探討 52 4−4−5 殘差分布圖 54 4−5 Face-centered Central Composite Design (FCCCD) 55 4−5−1 FCCCD 因子階層與因子模型結果 55 4−5−2 ANOVA 分析與因子交互作用探討 58 4−5−3 殘差分布圖 60 4−5−4 FCCCD最佳化結果 61 4−6 待測物偵測極限與檢量線 62 4−7 真實樣品的檢測 64 4−8 方法的精密度與準確度 65 4−9 文獻比較 66 4−10 Analytical Eco−Scale 68 第五章 結論 71 第六章 參考文獻 73

    第六章 參考文獻
     台灣質譜學會,質譜分析技術原理與應用,2015。
     飲料店營業額創新高 疫情考驗經營智慧,張婉瑤,工商時報,04/2020。
     Abbott, A. P., Capper, G., Davies, D. L., Rasheed, R. K., & Tambyrajah, V.. Novel solvent properties of choline chloride/urea mixtures. Chemical Communications, 2003, 1, 70-71.
     Anastas, P., & Eghbali, N. Green chemistry: principles and practice. Chemical Society Reviews, 2010, 39, 301-312.
     Ao, Y. T., Chen, Y. C., & Ding, W. H.. Deep eutectic solvent-based ultrasound-assisted emulsification microextraction for the rapid determination of benzotriazole and benzothiazole derivatives in surface water samples. Journal of Hazardous Materials, 2021, 401, 123383.
     Asheim, J., Vike-Jonas, K., Gonzalez, S. V., Lierhagen, S., Venkatraman, V., Veivåg, I. L. S., Snilsberg B., Flaten, T. P., & Asimakopoulos, A. G.. Benzotriazoles, benzothiazoles and trace elements in an urban road setting in Trondheim, Norway: Re-visiting the chemical markers of traffic pollution. Science of The Total Environment, 2019, 649, 703-711.
     Asimakopoulos, A. G., Bletsou, A. A., Wu, Q., Thomaidis, N. S., & Kannan, K.. Determination of benzotriazoles and benzothiazoles in human urine by liquid chromatography-tandem mass spectrometry. Analytical chemistry, 2013b, 85, 441-448.
     Aubert, C., Baumann, S., & Arguel, H.. Optimization of the analysis of flavor volatile compounds by liquid− liquid microextraction (LLME). Application to the aroma analysis of melons, peaches, grapes, strawberries, and tomatoes. Journal of Agricultural and Food Chemistry, 2005, 53, 8881-8895.
     Chen, C. H., Chung, W. H., & Ding, W. H.. Determination of benzotriazole and benzothiazole derivatives in marketed fish by double-vortex-ultrasonic assisted matrix solid-phase dispersion and ultrahigh-performance liquid chromatography-high resolution mass spectrometry. Food Chemistry, 2020, 333, 127516.
     Chen, X., & Ye, N.. Graphene oxide-reinforced hollow fiber solid-phase microextraction coupled with high-performance liquid chromatography for the determination of cephalosporins in milk samples. Food Analytical Methods, 2016, 9, 2452-2462.
     Chum, H. L., Koch, V. R., Miller, L. L., & Osteryoung, R. A.. Electrochemical scrutiny of organometallic iron complexes and hexamethylbenzene in a room temperature molten salt. Journal of the American Chemical Society, 1975, 97, 3264-3265.

     de Souza Pinheiro, A., & de Andrade, J. B.. Development, validation and application of a SDME/GC-FID methodology for the multiresidue determination of organophosphate and pyrethroid pesticides in water. Talanta, 2009, 79, 1354-1359.
     Douny, C., Dufourny, S., Brose, F., Verachtert, P., Rondia, P., Lebrun, S., Marzorati, M., Everaert, N., Delcenserie, V., & Scippo, M. L.. Development of an analytical method to detect short-chain fatty acids by SPME-GC–MS in samples coming from an in vitro gastrointestinal model. Journal of Chromatography B, 2019, 1124, 188-196.
     Farajzadeh, M. A., Hojghan, A. S., & Mogaddam, M. R. A.. Development of a new temperature-controlled liquid phase microextraction using deep eutectic solvent for extraction and preconcentration of diazinon, metalaxyl, bromopropylate, oxadiazon, and fenazaquin pesticides from fruit juice and vegetable samples followed by gas chromatography-flame ionization detection. Journal of Food Composition and Analysis, 2018, 66, 90-97.
     Ferrey, M. L., Hamilton, M. C., Backe, W. J., & Anderson, K. E.. Pharmaceuticals and other anthropogenic chemicals in atmospheric particulates and precipitation. Science of the Total Environment, 2018, 612, 1488-1497.
     Francisco, M., van den Bruinhorst, A., & Kroon, M. C.. Low‐transition‐temperature mixtures (LTTMs): A new generation of designer solvents. Angewandte Chemie International Edition, 2013, 52, 3074-3085.
     Gałuszka, A., Migaszewski, Z. M., Konieczka, P., & Namieśnik, J.. Analytical Eco-Scale for assessing the greenness of analytical procedures. TrAC Trends in Analytical Chemistry, 2012, 37, 61-72.
     Herrero, P., Borrull, F., Pocurull, E., & Marcé, R. M.. Efficient tandem solid-phase extraction and liquid chromatography-triple quadrupole mass spectrometry method to determine polar benzotriazole, benzothiazole and benzenesulfonamide contaminants in environmental water samples. Journal of Chromatography A, 2013, 1309, 22-32
     Herrero, P., Borrull, F., Pocurull, E., & Marcé, R. M.. An overview of analytical methods and occurrence of benzotriazoles, benzothiazoles and benzenesulfonamides in the environment. TrAC Trends in Analytical Chemistry, 2014a, 62, 46-55.
     Herrero, P., Borrull, F., Pocurull, E., & Marcé, R. M.. A quick, easy, cheap, effective, rugged and safe extraction method followed by liquid chromatography-(Orbitrap) high resolution mass spectrometry to determine benzotriazole, benzothiazole and benzenesulfonamide derivates in sewage sludge. Journal of Chromatography A, 2014b, 1339, 34-41.

     Hidalgo‐Serrano, M., Borrull, F., Marcé, R. M., & Pocurull, E.. Presence of benzotriazoles, benzothiazoles and benzenesulfonamides in surface water samples by liquid chromatography coupled to high‐resolution mass spectrometry. Separation Science Plus, 2019, 2, 72-80.
     Huang, Z., Zhang, Y., Wang, L., Ding, L., Wang, M., Yan, H., Li Y., Zhu, S. Simultaneous determination of 103 pesticide residues in tea samples by LC‐MS/MS. Journal of separation science, 2009, 32, 1294-1301.
     Janna, H., Scrimshaw, M. D., Williams, R. J., Churchley, J., & Sumpter, J. P.. From dishwasher to tap? Xenobiotic substances benzotriazole and tolyltriazole in the environment, Environmental Science & Technology, 2011, 45, 3858-3864.
     Le Bozec, L., & Moody, C. J.. Naturally occurring nitrogen–sulfur compounds. The benzothiazole alkaloids. Australian journal of Chemistry, 2009, 62, 639-647.
     Leong, M. I., & Huang, S. D.. Dispersive liquid–liquid microextraction method based on solidification of floating organic drop combined with gas chromatography with electron-capture or mass spectrometry detection. Journal of Chromatography A, 2008, 1211, 8-12.
     Liao, C., Kim, U. J., & Kannan, K.. A review of environmental occurrence, fate, exposure, and toxicity of benzothiazoles. Environmental Science & Technology, 2018, 52, 5007-5026.
     Li, J., Zhao, H., Zhou, Y., Xu, S., & Cai, Z.. Determination of benzotriazoles and benzothiazoles in human urine by UHPLC-TQMS. Journal of Chromatography B, 2017, 1070, 70-75.
     Liu, W., Xue, J., & Kannan, K.. Occurrence of and exposure to benzothiazoles and benzotriazoles from textiles and infant clothing. Science of the Total Environment, 2017, 592, 91-96.
     Magiera, S., & Gülmez, Ş.. Ultrasound-assisted emulsification microextraction combined with ultra-high performance liquid chromatography–tandem mass spectrometry for the analysis of ibuprofen and its metabolites in human urine. Journal of Pharmaceutical and Biomedical Analysis, 2014, 92, 193-202.
     Makoś, P., Fernandes, A., Przyjazny, A., & Boczkaj, G.. Sample preparation procedure using extraction and derivatization of carboxylic acids from aqueous samples by means of deep eutectic solvents for gas chromatographic-mass spectrometric analysis. Journal of Chromatography A, 2018, 1555, 10-19.
     Malaeke, H., Housaindokht, M. R., Monhemi, H., & Izadyar, M.. Deep eutectic solvent as an efficient molecular liquid for lignin solubilization and wood delignification. Journal of Molecular Liquids, 2018, 263, 193-199.
     Marsh, K. N., Boxall, J. A., & Lichtenthaler, R.. Room temperature ionic liquids and their mixtures—a review. Fluid Phase Equilibria, 2004, 219, 93-98.

     McNeill, K. S., & Cancilla, D. A.. Detection of triazole deicing additives in soil samples from airports with low, mid, and large volume aircraft deicing activities. Bulletin of Environmental Contamination and Toxicology, 2009, 82, 265-269.
     Naccarato, A., Gionfriddo, E., Sindona, G., & Tagarelli, A.. Simultaneous determination of benzothiazoles, benzotriazoles and benzosulfonamides by solid phase microextraction-gas chromatography-triple quadrupole mass spectrometry in environmental aqueous matrices and human urine. Journal of Chromatography A, 2014, 1338, 164-173.
     Nagatomi, Y., Yoshioka, T., Yanagisawa, M., Uyama, A., & Mochizuki, N. Simultaneous LC-MS/MS analysis of glyphosate, glufosinate, and their metabolic products in beer, barley tea, and their ingredients. Bioscience, Biotechnology, and Biochemistry, 2013, 77, 2218-2221.
     Nuñez, A., Vallecillos, L., Marcé, R. M., & Borrull, F.. Occurrence and risk assessment of benzothiazole, benzotriazole and benzenesulfonamide derivatives in airborne particulate matter from an industrial area in Spain.Science of The Total Environment, 2020, 708, 135065.
     Oellig, C., & Schwack, W. Planar solid phase extraction clean-up for pesticide residue analysis in tea by liquid chromatography–mass spectrometry. Journal of Chromatography A, 2012, 1260, 42-53.
     Pallares, N., Font, G., Mañes, J., & Ferrer, E. Multimycotoxin LC–MS/MS analysis in tea beverages after dispersive liquid–liquid microextraction (DLLME). Journal of Agricultural and Food Chemistry, 2017, 65, 10282-10289.
     Pena, M. T., Vecino-Bello, X., Casais, M. C., Mejuto, M. C., & Cela, R.. Optimization of a dispersive liquid–liquid microextraction method for the analysis of benzotriazoles and benzothiazoles in water samples. Analytical and Bioanalytical Chemistry, 2012, 402, 1679-1695.
     Popescu, A. M., Donath, C., & Constantin, V.. Density, viscosity and electrical conductivity of three choline chloride based ionic liquids.Bulg. Chem. Commun, 2014,46, 452-457.
     Quigley, A., Cummins, W., & Connolly, D.. Dispersive liquid-liquid microextraction in the analysis of milk and dairy products: a review. Journal of Chemistry, 2016, 2016.
     Rai, S., Singh, A. K., Srivastava, A., Yadav, S., Siddiqui, M. H., & Mudiam, M. K. R.. Comparative evaluation of QuEChERS method coupled to DLLME extraction for the analysis of multiresidue pesticides in vegetables and fruits by gas chromatography-mass spectrometry. Food Analytical Methods, 2016, 9, 2656-2669.
     Rezaee, M., Assadi, Y., Hosseini, M. R. M., Aghaee, E., Ahmadi, F., & Berijani, S.. Determination of organic compounds in water using dispersive liquid–liquid microextraction. Journal of Chromatography A, 2006, 1116, 1-9.
     Salas, D., Borrull, F., Marcé, R. M., & Fontanals, N.. Study of the retention of benzotriazoles, benzothiazoles and benzenesulfonamides in mixed-mode solid-phase extraction in environmental samples. Journal of Chromatography A, 2016, 1444, 21-31.
     Seddon, K. R., Stark, A., & Torres, M. J.. Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure Appl. Chem, 2000, 72, 2275-2287.
     Sheldon, R.. Catalytic reactions in ionic liquids. Chemical Communications, 2001 23, 2399-2407.
     Smith, E. L., Abbott, A. P., & Ryder, K. S.. Deep eutectic solvents (DESs) and their applications. Chemical Reviews, 2014, 114, 11060-11082.
     Trabalón, L., Nadal, M., Borrull, F., & Pocurull, E.. Determination of benzothiazoles in seafood species by subcritical water extraction followed by solid-phase microextraction-gas chromatography-tandem mass spectrometry: estimating the dietary intake. Analytical and Bioanalytical Chemistry, 2017, 409, 5513-5522.
     Wang, L., Asimakopoulos, A. G., Moon, H. B., Nakata, H., & Kannan, K.. Benzotriazole, benzothiazole, and benzophenone compounds in indoor dust from the United States and East Asian countries. Environmental Science & Technology, 2013, 47, 4752-4759.
     Wilkes, J. S., & Zaworotko, M. J.. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. Journal of the Chemical Society, Chemical Communications, 1992, 13, 965-967.
     Wu, Q., Feng, C., Zhao, G., Wang, C., & Wang, Z.. Graphene‐coated fiber for solid‐phase microextraction of triazine herbicides in water samples. Journal of Separation Science, 2012, 35, 193-199.
     Xue, J., Wan, Y., & Kannan, K.. Occurrence of benzotriazoles (BTRs) in indoor air from Albany, New York, USA, and its implications for inhalation exposure. Toxicological & Environmental Chemistry, 2017, 99, 402-414.
     Xu, P., Zheng, G. W., Zong, M. H., Li, N., & Lou, W. Y.. Recent progress on deep eutectic solvents in biocatalysis. Bioresources and Bioprocessing, 2017, 4, 1-18.
     Van Leerdam, J. A., Hogenboom, A. C., van der Kooi, M. M., & de Voogt, P.. Determination of polar 1H-benzotriazoles and benzothiazoles in water by solid-phase extraction and liquid chromatography LTQ FT Orbitrap mass spectrometry. International Journal of Mass Spectrometry, 2009, 282, 99-107.
     Yamamoto, K., Hayashi, M., Murakami, Y., Araki, Y., Otsuka, Y., Kashiwagi, T., ... & Ukeda, H. Development of LC-MS/MS analysis of cyclic dipeptides and its application to tea extract. Bioscience, Biotechnology, and Biochemistry, 2016, 80, 172-177.

    QR CODE
    :::