| 研究生: |
謝詮 Chuan Hsieh |
|---|---|
| 論文名稱: |
On the Blow-up solutions of Biharmonic Equation on a ball |
| 指導教授: |
陳建隆
Jann-Long Chern |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系 Department of Mathematics |
| 畢業學年度: | 92 |
| 語文別: | 英文 |
| 論文頁數: | 19 |
| 外文關鍵詞: | blow-up |
| 相關次數: | 點閱:20 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這篇論文中我們主要探討Biharmonic Equation and
Polyharmonic Equation 在有限區間解的行為就能Blow-up 。
在第一章節中我們以介紹的方式瞭解現今數學家對此方程式中
的探討跟瞭解並且給予正確的定義和主要定理的敘述,在第二章節裡
我給予Lemmas 做先前的預備知識,在第三章節中我給予定理完整的
證明,而在最後一個章節中列出相關文獻提供各位讀者參考。
In he paper we are consider for Biharmonic Equations and Polyharmonic Equation in the finite interval will Blow-up.
In the chapter 1 we are introduce the main theorem and to definition equation.
In the chapter we give some Lemmas in order to proofs theorems 1.1 and 1.2
In the chapter 3 we proofs of theorem 1.1 and 1.2,and the last chapter we give the references
References
[1]Sattinger, D.H.:Conformal metric in R2 with prescribed carvature. Indi-
ana Univ. Math. J. 22, 1-4 (1972).
[2]Oleinik, O.A.:On the equantion 4u+K(x)eu = 0. Russian Math. Surveys
33, 243-244 (1978).
[3]W-M.Ni, On the elliptic equation 4u + K(x)e2u = 0 and conformal met-
rics with prescried Gaussian, Invent, Math. 66 (1982), 343-352.
[4]T.Kusano and S. Oharu, Bounded entire solutions of second order semi-
linear elliptic equation with application to a parabolic intial value problem,
Indiana Univ. Math. J. 34 (1985) 85-95.
[5]W-M.Ni, On the elliptic equation 4u+K(x)u
n¡2
n+2 = 0, its generalizations,
and applications in geometry, Indiana Univ. Math. J. 31 (1982), 493-529.
[6]R.McOwen,On the equation 4u + K(x)e2u = f and prescribed negative
carvature in R2, J. Math. Anal.Appl. 103 (1984), 365-370.
[7]Kazdan, J., Prescribing the curvature of a Riemannian manifold, NSF-
CBMS Regional Conference Lecture Notes 57 (1985).
[8]Cheng, K.-S. and Lin, J.-T., on the elliptic Equation 4u = K(x)u¾ AND
4u = K(x)e2u;Trans. of the Amer. Math.
[9]Cheng,K.-S. and Smoller, Joel A.,Conformal metrics with prescribed Gaus-
sian curvature on R2,Trans.Math.Soc. 336 (1993), no.1,219-251.
[10]Lin, C.-S., A classi¯cation of solution of a conformally invariant fourth
order equation in Rn, Comment. Helv. 73(1998) 206-231