跳到主要內容

簡易檢索 / 詳目顯示

研究生: 謝詮
Chuan Hsieh
論文名稱:
On the Blow-up solutions of Biharmonic Equation on a ball
指導教授: 陳建隆
Jann-Long Chern
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
畢業學年度: 92
語文別: 英文
論文頁數: 19
外文關鍵詞: blow-up
相關次數: 點閱:20下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文中我們主要探討Biharmonic Equation and
    Polyharmonic Equation 在有限區間解的行為就能Blow-up 。
    在第一章節中我們以介紹的方式瞭解現今數學家對此方程式中
    的探討跟瞭解並且給予正確的定義和主要定理的敘述,在第二章節裡
    我給予Lemmas 做先前的預備知識,在第三章節中我給予定理完整的
    證明,而在最後一個章節中列出相關文獻提供各位讀者參考。


    In he paper we are consider for Biharmonic Equations and Polyharmonic Equation in the finite interval will Blow-up.
    In the chapter 1 we are introduce the main theorem and to definition equation.
    In the chapter we give some Lemmas in order to proofs theorems 1.1 and 1.2
    In the chapter 3 we proofs of theorem 1.1 and 1.2,and the last chapter we give the references

    CONTENTS 1. INTRODUCTION……………………………………………2~5 2. PRELIMINARIES……………………………………………5~13 3. MAIN THEOREM……………………………………………13~18 REFERENCE……………………………………………………………18~19

    References
    [1]Sattinger, D.H.:Conformal metric in R2 with prescribed carvature. Indi-
    ana Univ. Math. J. 22, 1-4 (1972).
    [2]Oleinik, O.A.:On the equantion 4u+K(x)eu = 0. Russian Math. Surveys
    33, 243-244 (1978).
    [3]W-M.Ni, On the elliptic equation 4u + K(x)e2u = 0 and conformal met-
    rics with prescried Gaussian, Invent, Math. 66 (1982), 343-352.
    [4]T.Kusano and S. Oharu, Bounded entire solutions of second order semi-
    linear elliptic equation with application to a parabolic intial value problem,
    Indiana Univ. Math. J. 34 (1985) 85-95.
    [5]W-M.Ni, On the elliptic equation 4u+K(x)u
    n¡2
    n+2 = 0, its generalizations,
    and applications in geometry, Indiana Univ. Math. J. 31 (1982), 493-529.
    [6]R.McOwen,On the equation 4u + K(x)e2u = f and prescribed negative
    carvature in R2, J. Math. Anal.Appl. 103 (1984), 365-370.
    [7]Kazdan, J., Prescribing the curvature of a Riemannian manifold, NSF-
    CBMS Regional Conference Lecture Notes 57 (1985).
    [8]Cheng, K.-S. and Lin, J.-T., on the elliptic Equation 4u = K(x)u¾ AND
    4u = K(x)e2u;Trans. of the Amer. Math.
    [9]Cheng,K.-S. and Smoller, Joel A.,Conformal metrics with prescribed Gaus-
    sian curvature on R2,Trans.Math.Soc. 336 (1993), no.1,219-251.
    [10]Lin, C.-S., A classi¯cation of solution of a conformally invariant fourth
    order equation in Rn, Comment. Helv. 73(1998) 206-231

    QR CODE
    :::