跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王瑞鑫
Jui-Hsin Wang
論文名稱: 穿透式全像光碟光學讀取之研究
指導教授: 孫慶成
Ching-Cherng Sun
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 92
語文別: 中文
論文頁數: 70
中文關鍵詞: 全像儲存體積全像相位疊加法
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文是利用球面波位移技術與共軛光讀取架構結合體積全像的繞射特性,設計一高儲存容量與高傳輸速度的光學儲存系統,並以其光學讀取訊號研究系統的特性。因為讀取光與參考光的相位不匹配,讀取光微小位移將使得繞射強度快速地衰減,因此系統將發展出具有高儲存容量的特性。另外,此儲存系統之訊號輸入元件為一空間調制器,因此系統將擁有光學平行處理的能力,增加訊號的傳輸速度。
    論文中,將針對體積全像的繞射訊號以相位疊加法做進一步分析。經相位疊加法運算,我們可得到訊號輸出面上的繞射光場,並以此繞射訊號的相對強度變化判定位移容忍度的大小。此外,因為訊號輸入為陣列式畫素分佈,因此我們針對訊號為畫素形式提出另一種計算的模型,並研究其繞射訊號特性與系統的位移容忍度。最後,以位移容忍度來討論系統參數的最佳化、儲存容量與實現此全像儲存系統的困難。


    I 第一章緒論................................................................ 1 1.1 全像光學儲存.......................................................... 1 1.2 全像儲存之位移多工.................................................... 2 1.3 論文大綱.............................................................. 3 第二章體積全像的繞射效率.................................................. 4 2.1 耦合理論法............................................................ 4 2.2 相位疊加法........................................................... 11 第三章穿透式全像位移多工儲存系統......................................... 14 3.1 系統架構............................................................. 14 3.2 相位疊加法之模擬..................................................... 15 3.2.1 取樣點的分佈....................................................... 18 3.2.2 積分近似法......................................................... 21 3.2.3 取樣點的數量....................................................... 25 3.3 體積全像之位移選擇性................................................. 28 3.4 討論................................................................. 40 第四章以空間調制器為物光輸入之讀取特性................................... 41 4.1 空間調制器的理論模型................................................. 41 4.2 空間調制器的空間特性................................................. 47 4.2.1 因空間位置不同的繞射訊號........................................... 47 4.2.2 因空間位置不同的位移選擇性......................................... 50 4.3 系統的參數與讀取特性................................................. 54 4.3.1 物光的入射角θ...................................................... 54 4.3.2 參考光的散角φ...................................................... 56 4.3.3 儲存介質厚度....................................................... 58 4.4 讀取光的失焦......................................................... 60 4.5 相位共軛光之讀取系統................................................. 63 4.6 系統之儲存容量....................................................... 66 4.7 討論................................................................. 66 第五章結論............................................................... 68 參考文獻................................................................. 69

    69
    [1] J. W. Goodman, Introduction to Fourier Optics, McGraw, New York, 1996.
    [2] H. Coufal, and G. W. Burr, “Optical data storage,” Chapter 26, International Trends in Applied Optics, ed., A. Guenther, SPIE, 2002.
    [3] 蔡定平, "近場光學記錄的新發展(上)", 光訊, 第七十四期, 11-14 頁, 1998.
    [4] 蔡定平, "近場光學記錄的新發展(下)", 光訊, 第七十五期, 29-31 頁, 1999.
    [4] G. W. Burr, “Holographic storage,” Encyclopedia of Optical Engineering, ed., R. B. Johnson and R. G. Driggers, Marcel Dekker, New York, 2003.
    [5] J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage,” IBM journal of research and development, 44, 2000.
    [6] R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical holography, Academic press, New York, 1971.
    [7] D. L. Staebler, W. Phillips, “Fe-Doped LiNbO3 for read-write applications,” Appl. Opt. 13, 788-794, 1974.
    [8] S. H. Lin, K. Y. Hsu, W. Z. Chen and W. T. Whang, “Phenanthrenequinone-doped poly(methyl methacrylate) photopolymer bulk for volume holographic data
    storage,” Opt. Lett. 25, 451-453, 2000.
    [9] M. Schnoes, B. Ihas, A. Hill, L. Dhar, D. Michaels, S. Setthachayanon, G.
    Schomberger, and W. L. Wilson, “Holographic data storage media for practical
    systems,” InPhase Tech. whitepapers, 2003.
    [10] M. Haw, “The light fantastic,” Nature 422, 556-558, 2003.
    [11] E. N. Leith, A. Kozma, J. Upatnieks, J. Marks, N. Massey, “Holographic data storage in three dimensional media.,” Appl. Opt., 5, 1303-1311, 1966.
    [12] F. H. Mok, M. C. Tackitt, and H. M. Stoll, “Storage of 500 high-resolution holograms in LiNbO3 crystal,” Opt. Lett. 16, 605-607, 1991.
    [13] G. A. Rakuljic, V. Leyva, and A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume hologram,” Opt. Lett. 17, 1471-1473, 1992.
    [14] 蘇威佳, 三維亂相編碼之體積全像及其應用, 國立中央大學光電科學研究所博士論文, 中華民國九十年.
    [15] C. C. Sun, R. H. Tsou, W. Chang, J. Y. Chang, and M. W. Chang “Random
    phase-coded multiplexing of hologram volumes using ground glass,” Opt. Quantum Electron. 28, 1509-1520, 1996.
    [16] D. Psaltis, M. Levene, A. Pu, and G. Barbastathis, “Holographic storage using shift multiplexing,” Opt. Lett. 20, 1184-1185, 1995.
    [17] C. C. Sun, W. C. Su, Y. N. Lin, Y. OuYang, S. P. The, and B. Wang, “Three
    dimensional shifting sensitivity of a volume hologram with spherical reference
    waves,” Opt. Mem. Neural Networks 8, 229-236, 1999.
    [18] A. Yariv, and P. Yeh, Optical Waves in Crytals, John Wiley & Sons, New York, 1984.
    [19] G. Barbastathis, M. Levene, and D. Psaltis, “Shift multiplexing with spherical reference waves,” Appl. Opt. 35, 2403-2417, 1996.
    [20] H.-Y. S. Li, and D. Psaltis, “Three-dimensional holographic disks,” Appl. Opt. 33, 3764-3774, 1994.
    [21] W.C. Su, C. C. Sun, and Y. Ouyang, “Multilayer storage in a shift-multiplexed holographic disk,” Opt. Eng. 42, 1528-1529, 2003.
    [22] G. J. Steckman, A. Pu, and D. Psaltis, “Storage density of shift-multiplexed holographic memory,” Appl. Opt. 40, 3387-3394, 2001.
    [23] H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909-2947, 1969.
    [24] P.Yeh, Introduction to Photorefractive Nonlinear Optics, Wiley, New York, 1993.
    [25] C. C. Sun, “Simplified model for diffraction analysis of volume holograms,” Opt. Eng. 42, 1184-1185, 2003.
    [26] F. Zhao, and K. Sayano, “Compact read-only memory with lensless
    phase-conjugate holograms,” Opt. Lett. 21, 1295-1297, 1996.
    [27] J.-J. P. Drolet, E. Chuang, G. Barbastathis, and D. Psaltis, “Compact, integrated dynamic holographic memory with refreshed holograms,” Opt. Lett. 22, 552-554,
    1997.
    [28] G. W. Burr, and I. Leyva, “Multiplexed phase-conjugate holographic data storage with a buffer hologram,” Opt. Lett. 25, 499-501, 2000.
    [29] J. Feinberg, “Self-pumped, continuous-wave phase conjugator using internal reflection,” Opt. Lett. 7, 486-488, 1982.
    [31] X. Yi, S. Campbell, Pochi Yeh, and C. Gu “Statistical analysis of cross-talk noise and storage capacity in volume holographic memory: image place holograms,” Opt. Lett. 20, 779-781, 1995.
    [32] G. W. Burr, and T. Weiss, “Compensation for pixel misregistration in volume holographic data storage,” Opt. Lett. 26, 542-544, 2001.
    [33] Y. Yang, A. Adibi, and D. Psaltis, “Comparison of transmission and the 90-degree holographic recording geometry,” Appl. Opt. 42, 3418-3427, 2003.
    [34] C. Gu, J. Hong, I. McMichael, and R. Saxena, “Cross-talk-limited storage
    capacity of volume holographic memory,” J. Opt. Soc. Am. A 9, 1978-1983, 1992.
    [35] D. Psaltis, D. Brady, and K. Wagner, “Adaptive optical networks using
    photorefractive crystals,” Appl. Opt. 27, 1752-1759, 1988.
    [36] F.H. Mok, G. W. Burr, and D. Psaltis, “System metric for holographic memory systems,” Opt. Lett. 21, 896-898, 1996.

    QR CODE
    :::