跳到主要內容

簡易檢索 / 詳目顯示

研究生: 葉哲宏
Jhe-hung Yeh
論文名稱: 在Lewis的ARMA模型下 校正器的設計方法運用在統計製程控制上
Applying Filter design Approach to Statistical Process Control for Lewis’s ARMA Model
指導教授: 葉英傑
Ying-chieh Yeh
口試委員:
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理研究所
Graduate Institute of Industrial Management
畢業學年度: 99
語文別: 英文
論文頁數: 29
中文關鍵詞: 自我相關指數加權移動平均管制圖   
外文關鍵詞: EWMA control chart, autocorrelation
相關次數: 點閱:20下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 這篇研究主要是探討將校正器的設計運用在統計製程的管制上,並且討論對於不同製程分配的影響。不同於傳統的自我迴歸移動平均過程,我們假設Lewis的自我迴歸移動平均過程為製程資料。在本篇論文我們使用指數加權移動平均的管制圖。我們將運用線性的校正器作用在由製程資料產生的觀測值,藉此得到我們管制圖的統計量。根據管制圖的統計量,我們可以運用馬可夫鏈的方法去計算超出管制界限的平均連串長度。在此,我們研究的目標是在預定管制界的平均連串長度中,縮小超出管制界限的平均連串長度。最後透過調整參數和轉換分配的方式去提出相對簡單的演算法。如此一來,我們可以避免複雜且費時的計算。


    In this study, we apply filter design to statistical process control (SPC) and discuss the impact of different process distributions. Instead of using conventional autoregressive moving-average processes, we assume Lewis’s autoregressive moving-average (ARMA) processes as data processes. The control chart we used in this study is the exponentially weighted moving average (EWMA) control chart. We will apply linear filter on the observations generated from our data process to obtain our control chart statistic. With the control chart statistic, we can calculate the out-of-control ARL by Markov chain method. And our research objective is to reduce the out-of-control ARL with a predetermined in-control ARL. In the final, we adjust parameter and transform distribution to propose a relatively simple algorithm. Therefore, we can avoid complex and time-consuming calculation.

    中文摘要 I Abstract II Table of Content III List of Tables IV List of Figures V 1. Introduction 1 1.1 Background and motivation 1 1.2 Research objective 2 1.3 Research framework 3 2. Literature review 5 2.1 Filter design 5 2.2 EWMA control chart 6 2.3 Time series 7 3. The model 9 3.1 Model description 11 3.2 Applying the filter design 14 3.3 Proposed algorithm 16 4. Numerical Analysis 18 4.1 Distribution comparison 18 4.2 Sensitive analysis 21 4.3 Normal approximation method 23 5. Conclusion and future research 25 5.1 Conclusion 25 5.2 Future research 25 References 27

    1. Alwan, L. C. and Roberts, H. V.,(1988). ”Time-Series Modeling for Statistical Process Control”. Journal of Business & Economic Statistics, 6(1), 87-95.
    2. Apley, D. W. and Chin, C.,(2006). “Optimal Design of Second-Order Linear Filters for Control charting”. Technometrics 45(3), 337-348.
    3. Apley, D. W. and Chin, C.,(2007). “An Optimal Filter Design Approach to Statistical Process Control”. Journal of Quality Technology, 39(2), 93-117.
    4. Apley, D. W. and Shi, J.,(1999). “GLRT for Statistical Process Control of
    Autocorrelated Processes”. IIE Transactions, 31(12), 1123-1134.
    5. Borror, C. M., Montgomery, D. C., Runger, G. C.,(1999). “Robustness of the EWMA control chart to non normality”. J. Qual. Technol. 31:309-316.
    6. Box, G. E. P., M. E. Muller and G. M. Jenkins., (1976). “Time series analysis
    forecasting and control”, 2th ed. Holden Day: San Francisco.
    7. Box, G. E. P. and Ramírez, J., (1992). “Cumulative Score Charts”.Quality and
    Reliability Engineering International, 8(1), 1727.
    8. Box, G., Jenkins, G., and Reinsel, G.,(1994). “Time Series Analysis, Forecasting,
    and Control”, 3rd ed. Englewood Cliffs, NJ: Prentice-Hall.
    9. Crowder, S. V.,(1987). “A Simple Method for Studying Run Length Distributions of Exponentially Weighted Moving Average Control Charts”, Technometrics,29 ,
    401-407.
    10. Crowder, S. V. and Hamilton, M.,(1992). “An EWMA for Monitoring a Standard
    Deviation”. Journal of Quality Technology, 24(1), 12-21.
    11. Granger, C. M. and A. P. Anderson.,(1978). “An introduction to bilinear time series models”. Vandenhoeck and Ruprecht: Gottingen.
    12. Hawkins, D. M. and Wixley, R. A. J., (1986), “A Note on the Transformation
    of Chi-Squared Variables to Normality”. The American Statistician, 40, 296-298.
    13. Jiang, W., Tsui, K., and Woodall, W. H.,(2000). “A New SPC Monitoring Method:
    The ARMA Chart” .Technometrics, 42, 399-410.
    14. Johnson, R. A. and Bagshaw, M.,(1974). “The Effect of Serial Correlation on the
    Performance of CUSUM Tests”.Technometrics, 16(1), 103-112.
    15. J. Abate and W. Whitt.,( 1995). “Numerical inversion of Laplace transforms of
    probability distributions”, ORSA J. on Computing 7, 36–43.
    16. L. Shu and W. Jiang.,(2008). “A new EWMA chart for monitoring process
    dispersion”.Journal of Quality Technology 40 , 319-331.
    17. Lewis. P.A.W.,(1982). “Simple multivariate time series for simulations of complex
    systems”. Winter Simulation Conf., 389-390.
    18. Lu, C. W., and Reynolds, M. R.,(1999). “EWMA Control Charts for Monitoring
    the Mean of Autocorrelated Processes” Journal of Quality Technology, 31,
    166-188.
    19. Machado, M.A.G., Costa, A.F.B.,(2008). “The double sampling and the EWMA
    charts based on the sample variances”. International Journal of Production
    Economics 114, 134-148.
    20. Maravelakis, P.E., Castagliola, P.,(2009). “An EWMA chart for monitoring the
    processstandard deviation when parameters are estimated”. Computational
    Statistics and Data Analysis 53, 2653-2664.
    21. Miller, R. B.,(1979). Book review on “An introduction to bilinear time
    seriesmodels”, by C. W. Granger and A. P. Anderson. J. Amer. Statist. Ass. 74, 927.
    22. Montgomery, D. C., and Mastrangelo, C. M.,(1991). “Some Statistical Process
    Control Methods for Autocorrelated Data” Journal of Quality Technology, 23,
    179-193.
    23. Roberts, S. W.,(1959). “Control Chart Tests Based on Geometric Moving Averages” Technometrics1, 239-250.
    24. Robinson, P. B., and Ho, T. Y.,(1978). “Average Run Lengths of Geometric Moving Average Charts by Numerical Methods” Technometrics, 20, 85-93.
    25. Stoumbos, Z. G., Reynolds, M. R. Jr.,(2000). “Robustness to non normality and
    autocorrelation of individual control charts”. J. Statist. Computat. Simul. 66:145-187.
    26. Stoumbos, Z. G., Sullivan, J. H.,(2002). “Robustness to non normality of the
    multivariate EWMA control chart”. J. Qual. Technol. 34:260-276.
    27. Vermaat, M.B., Does, R.J.M.M., Bisgaard, S.,(2008). “EWMA control chart limits for first- and second-order autoregressive processes”. Quality and Reliability Engineering International 24, 573-584.
    28. Wilson, E. B., and Hilferty, M. M., (1931), “The Distribution of Chi-Squares,”
    Proceedings of the National Academy of Sciences, 17, 684-688.
    29. Yakowitz, S.,(1979a). “A nonparametric Markov model for daily river flow”. Water Resources Research, 15, 1035-1043.
    30. Yakowitz, S.,(1979b). “Nonparametric estimation of Markov transition functions”.
    Ann. Statist.7, 671-679.
    31. Zhang, N. F.,(1998). “A Statistical Control Chart for Stationary Process Data”.
    Technometrics, 40(1), 24-38.

    QR CODE
    :::