跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李文浩
Wen-Hao Li
論文名稱: 半導體製程中晶圓表面溫度及薄膜成長率與折射率之即時監控系統開發
Development of In-situ Monitoring System for the Surface Temperature of Wafer, Thin Film Growth-rate and Refractive Index in Semiconductor Process
指導教授: 李朱育
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 光機電工程研究所
Graduate Institute of Opto-mechatronics Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 102
中文關鍵詞: 即時量測半導體晶圓參數熱輻射薄膜
外文關鍵詞: in-situ, semiconductor, wafer parameters, thermal radiation, thin film.
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究開發一套半導體製程參數量測系統,用於即時監控半導體薄膜製程中晶圓表面溫度、薄膜成長速率與薄膜折射率等參數。根據本研究之光路、機構與電控設計來整合溫度量測模組與薄膜量測模組於同一量測架構,並以簡易之架構與原理來推算其結果。基於黑體輻射理論開發出非接觸式的溫度量測系統,並搭配位移平台來達到晶圓表面溫度全貌量測,以利將量測系統應用於實際製程旋轉情況下;基於薄膜光學干涉理論進行薄膜反射率量測,並根據反射率曲線擬合出薄膜成長速率與其折射率。
    本研究設計了晶圓加熱實驗來驗證本量測系統之量測能力,同時接收405 nm與940 nm波段之熱輻射訊號來因應不同製程需求所需要之量測波長,且結合位移平台與所開發之演算法來進行晶圓表面溫度全貌量測。其實驗結果,本量測系統於溫度量測方面,量測範圍可量測在500℃以上之物體,其準確度與商用輻射高溫計比較差量約為1℃。
    於薄膜成長速率與折射率量測方面,設計了空氣薄膜實驗來驗證本量測系統於薄膜參數量測能力。空氣薄膜實驗中,以楔形稜鏡與陶瓷壓電位移平台來模擬薄膜生長之情形,並以不同平台移動速率來效仿不同薄膜成長速率。本量測系統能量測到最慢薄膜成長速率為0.1 nm/s,所量測得薄膜成長速率與位移平台回傳之速率比較差量小於1%;量測之折射率與空氣之折射率定義比較其差量小於0.1%。


    An in-situ monitoring system for the semiconductor process is presented, which is used to monitor the temperature of wafer surface, the growth-rate and the refractive index of thin film in the semiconductor thin film process. The principles of the monitoring system are based on the blackbody radiation theorem, the optical interference theorem, and combined with the displacement stage to achieve the results of the two-dimensional temperature measurement.
    This research verifies the feasibility of the temperature measurement module by the experiment of heating wafer. In this measurement system, and detected the 405 nm and 940 nm thermal radiation for the different process, the 940 nm was used for general silicon wafer, and the 405 nm was used for the wafer with transparent, such as sapphire wafer, SiC wafer. For the two-dimensional temperature measurement, we detected the reflection light by the wafer to simulate the situation of heating wafer. For the thin film growth-rate measurement, this research designed a simulated experiment to verifies the thin film module, that is two wedge-prism clip the air layer, and changes the thickness by the piezoelectric(PZT) actuator, the measurement results compare with the return value of PZT.
    The experiment results presented that the measurement system is suitable to measure the object with 500℃ above for the temperature measurement, and the results compared with the commercial pyrometer, the relative differences are about 1℃. For the thin film measurement, the system is suitable to measure the growth-rate down to 0.1 nm/s, and the results compared with PZT and the refractive index, the relative differences are respectively less than 1% and 0.1%.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 XI 符號說明 XII 第一章 緒論 1 1-1 研究背景 1 1-2 文獻回顧 2 1-2-1 溫度量測之文獻回顧 2 1-2-2 薄膜量測之文獻回顧 6 1-3 研究目的 10 1-4 論文架構 11 第二章 理論與原理 12 2-1 熱輻射理論 13 2-1-1 黑體輻射 13 2-1-2 實際物體熱輻射 16 2-2 溫度量測系統 18 2-2-1 單波長溫度量測 19 2-2-2 具發射率校正之溫度量測 22 2-3 薄膜與反射率 22 2-4 光學干涉術 23 2-5 薄膜參數量測原理 24 2-5-1 垂直式入射薄膜 26 2-5-2 單層膜之透射與反射 27 2-6 弦波擬合 32 2-6-1 弦波頻率擬合 32 2-6-2 弦波直流項、振幅與相位擬合 34 2-7 鎖相放大器技術 36 2-8 小結 38 第三章 量測系統及架構 39 3-1 實驗用加熱腔體與其控制器 39 3-2 本量測系統及軟體介紹 42 3-2-1 本量測系統之架構 42 3-2-2 本量測系統人機介面之開發 46 3-3 光源、光學元件及光偵測器之選用 47 3-4 小結 52 第四章 實驗結果與討論 53 4-1 晶圓表面溫度量測 53 4-1-1 實驗儀器與架構介紹 53 4-1-2 靜止之溫度量測 56 4-1-2-1 即時監控溫度量測 56 4-1-3 載盤旋轉下晶圓溫度量測 62 4-1-4 掃描式晶圓表面溫度全貌量測 64 4-2 薄膜成長量測 68 4-2-1 空氣薄膜量測實驗 68 4-3 量測系統性能分析 72 4-3-1 最小解析度分析 72 4-3-2 穩定度分析 73 4-3-3 薄膜成長速率之限制 74 4-4 小結 76 第五章 誤差分析 77 5-1 系統誤差 77 5-1-1 光偵測器之偏壓誤差 77 5-1-2 斜向入射所引進之光學誤差 78 5-1-3 未將系統放置於聚焦位置之量測溫差 80 5-2 隨機誤差 81 5-2-1 環境溫度 81 5-2-2 機械與環境震動 81 5-2-3 電子雜訊之干擾 82 5-3 小結 82 第六章 結論與未來展望 83 6-1 結論 83 6-2 未來展望 84 參考文獻 85

    [1] P. A. Kinzie, Thermocouple Temperature Measurement., Wiley, New York, 1973.
    [2] IMPAC Infrared GmbH, Non-Contact Thermometry., Germany, 2004.
    [3] 安毓英,曾小東,光學感測與測量,初版,五南圖書出版公司,台北市,2004。
    [4] J. R. Creighton, D. D. Koleske and C. C. Mitchell, “Emissivity-correcting near-UV pyrometry for group-III nitride OMVPE”, J. Cryst. Growth, 287(2), 572-576, 2006.
    [5] Tapetado, J. D. lvarez, M. H. Migue´lez and C. V´azquez, “Two-Color Pyrometer for Process Temperature Measurement During Machining”, J. Lightwave Technol., 34(4), 1380-1386, 2016.
    [6] J. Thevenet, M. Siroux and B. Desmet, “Measurements of brake disc surface temperature and emissivity by two-color pyrometry”, Appl. Therm. Eng., 30, 753-759, 2010.
    [7] J. L. Gardner and T. P. Jones, “Multi-wavelength radiation pyrometry where reflectance is measured to estimate emissivity”, J. Phys. E: Sci. Instrum., 13, 306-310, 1980.
    [8] K. L. Cashdollar, “Three-wavelength pyrometer for measuring flame temperatures”, Appl. Optics, 18(15), 2595-2597, 1979.
    [9] J. J. Huang, H. C. Kuo and S. C. Shen, Nitride Semiconductor Light-Emitting Diodes (LEDs): Materials, Technologies and Applications, Woodhead Publishing, 2014.
    [10] 王俊程,「MOCVD晶圓表面溫度即時量測系統之開發」,國立中央大學,碩士論文,民國104年。
    [11] 蔡孟浩,「MOCVD晶圓關鍵參數即時量測系統開發」,國立中央大學,碩士論文,民國105年。
    [12] O. S. Heavens, Optical Properties of Thin Solid Films, Courier Corporation, 1991.
    [13] F. L. McCrackin, E. Passaglia, R. R. Stromberg, and H. L. Steinberg, “Measurement of the Thickness and Refractive Index of Very Thin Films and the Optical Properties of Surfaces by Ellipsometry”, J. Res. Natl. Bur. Stand., 67A(4), 363-377, 1963.
    [14] Z. H. Lu and J. P. McCaffrey, “SiO2 film thickness metrology by x-ray photoelectron spectroscopy”, Appl. Phys. Lett., 71(19), 2764-2766, 1997.
    [15] A. M. Goodman, “Optical interference method for the approximate determination of refractive index and thickness of a transparent layer”, Appl. Optics, 17(17), 2779-2787, 1978.
    [16] E. Steinsland, T. Finstad, A. Ferber, A. Hanneborg, “In situ measurement of etch rate of single crystal silicon”, Solid State Sens. Actuator, 707-710, 1997.
    [17] C. S. Lu, O. Lewis, “Investigation of film‐thickness determination by oscillating quartz resonators with large mass load”, J. Appl. Phys., 43, 4385-4390, 1972.
    [18] 廖振興,楊芳,夏文建,「光學薄膜膜厚監控方法與進展」,激光雜誌,25(4),10-12,2004。
    [19] 權貴秦,韓軍,「一種基於光電極值法的光學膜厚監控系統的改進設計」,應用光學,23(4),30-32,2002。
    [20] 張曉暉,陳清明,「一種提高極值法監控精度的方法」,激光技術,25(5),386-390,2001。
    [21] 劉曉雲,黃雲,「光學鍍膜寬帶膜厚監控系統」,國防科技大學簡報,23(1) 23-27,2001。
    [22] P. Wu, P. Gu, J. Tang, “Wideband monitoring of optical coatings with deposition error correction”, Proc. SPIE, 121-132, 2000.
    [23] W. G. Breiland and K. P. Killeen, “A virtual interface method for extracting growth rates and high temperature optical constants from thin semiconductor films using in situ normal incidence reflectance”, J. Appl. Phys, 78, 6726-6736, 1995.
    [24] 黃富榮,「即時薄膜光學參數量測系統之開發」,國立中央大學,碩士論文,民國103年。
    [25] Wien Approximation Formula,
    取自https://en.wikipedia.org/wiki/Wien_approximation。
    [26] W. G. Breiland, “Reflectance-correcting pyrometry in thin film deposition applications”, Sand Report, SAND 2003-1868, 2003.
    [27] J. T. ZETTLER, “Method for calibrating a pyrometer, method for determining the temperature of a semiconducting wafer and system for determining the temperature of a semiconducting wafer”, US 8388219 B2, 2013.
    [28] 李正中,薄膜光學與鍍膜技術,五版,藝軒圖書出版社,台北市,2006。
    [29] N. Dietz, U. Rossow, D. Aspnes, K. J. Bachmann, “Real-time optical monitoring of epitaxial growth: Pulsed chemical beam epitaxy of GaP and InP homoepitaxy and heteroepitaxy on Si”, J. Electron. Mater., 24(11), 1571-1576, 995.
    [30] E. Hecht, OPTICS, Fourth edition, Addison Wesley, San Francisco, 2002.
    [31] 梁志國,張大治,孫璟宇,李新良,「四參數正弦波曲線擬合的快速算法」,理論與實踐,26(1),4-8,2006。
    [32] P. Händel, “Properties of the IEEE-STD-1057 Four-Parameter Sine Wave Fit Algorithm”, IEEE Trans. Instrum. Meas., 49(6), 1189-1193, 2000.
    [33] P. Clarkson, T. J. Esward, P. M. Harris, A. A. Smith and I. M. Smith, “Software simulation of a lock-in amplifier with application to the evaluation of uncertainties in real measuring systems”, Meas. Sci. Technol., 21(4), 1-10, 2010.
    [34] LayTec 3-reflectance,
    取自http://www.laytec.de/key-technologies/metrology-methods/3l-reflectance。
    [35] Edmund Optics bandpass filter datasheet,
    取自 https://www.edmundoptics.eu/products。
    [36] Thorlabs optical element datasheet,
    取自 https://www.thorlabs.com。

    [37] Hamamatsu photomultiplier datasheet,
    取自https://www.hamamatsu.com/us/en/product。
    [38] Calex pyroUSB2.2,
    取自http://www.calex.co.uk/product/temperature-measurement。
    [39] D. Wu, X. Tang, H. S. Yoon, K. Wang, A. Olivier and X. Li, “MOCVD Growth of High-Quality and Density-Tunable GaAs Nanowires on ITO Catalyzed by Au Nanoparticles Deposited by Centrifugation”, Nanoscale Res. Lett., 10, 410, 2015.
    [40] AIXTRON report, Growth of GaN,
    取自https://www.fzu.cz/~movpe/fjfi/Growth%20of%20GaN%20with%20theory.pdf。

    QR CODE
    :::