跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王心慈
Hsin-Tzu Wang
論文名稱: 基於深度學習影像區塊一致性衡量之竄改區域偵測
Evaluating Image Block Consistency by Deep Learning for Locating Forgery Areas
指導教授: 蘇柏齊
Po-Chyi Su
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 60
中文關鍵詞: 卷積神經網路孿生網路影像竄改偵測影像區域一致性
外文關鍵詞: Image forensics, deep learning, Siamese network, image segmentation
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於數位相機與智慧型手機的普及,人們可以輕易地取得各式高解析度數位影像,而便利的相片編修工具讓幾乎所有的使用者都能自行修改數位影像,這也意味著數位影像內容有可能受到有心人士的竄改,並將其網路或社群網站中散布,更改的影像不僅混淆視聽,更可能被作為操縱輿論的工具。然而,目前對於多樣化的影像竄改方式仍無完善應對的方法,數位影像內容的真實性因此受到若干質疑。

    在影像鑑識領域中,一個重要的分支為來源相機模型的辨識,本研究以相機模型辨識為基礎,提出可運用於偵測各種影像畫面竄改的影像鑑識架構。所提出的方法不需要使用竄改影像作為訓練資料,而是採用原始影像或相片自身資訊,透過卷積神經網路,設計能夠學習相機模型的通用特徵提取器,接著運用孿生網路來學習比較兩個圖片區塊是否具備一致性,再根據比較結果選取適當的竄改區域,接著透過前景提取技術精修竄改區域。本研究的主要貢獻為 (1) 將影像區域一致性的研究延伸至影像鑑識應用、(2) 設計更好的區塊比較模式、(3) 改善竄改區域準確度。實驗結果證實本機制的實用性,並與現有方法的評比中取得最好的效果。


    Identifying the type of a camera used to capture an investigated image is a useful image forensic tool, which usually employs machine learning or deep learning techniques to train various models for effective forgery detection. In this research, we propose a forensic scheme to detect and even locate image manipulations based on deep-learning-based camera model identification. Since the ways of tampering images are very diverse, it’s difficult to collect enough tampered images for supervised learning. The proposed method avoids using tampered images of various kinds as the training data but employ the information of original pictures. We first train a convolutional neural network to acquire generic features for identifying camera models. Next, the similarity measurement using the Siamese network to evaluate the consistency of image block pairs is employed to locate approximate tampered areas. Finally, we refine the tampering areas through a segmentation network.

    The main contributions of this research include: (1) extending the study of image region consistency to image forensics applications, (2) designing a better block comparison algorithm, and (3) improving the accuracy of detected tampered regions. We test the proposed methods using public tempered image database and our own data to verify their feasibility. The results also show that the proposed scheme outperforms existing ones in locating tampered areas.

    論文摘要 i Abstract ii 誌謝 iii 目錄 iv 圖目錄 vi 第一章 緒論 1 1.1 研究動機與背景 1 1.2 研究貢獻 3 1.3 論文架構 3 第二章 相關研究 4 2.1 數位影像鑑識 4 2.1.1 JPEG 4 2.1.2 影像不連續性 5 2.1.3 影像噪聲 5 2.1.4 CFA Demosaicing Artifact 6 2.1.5 Local Binary Pattern 7 2.1.6 Chromatic Aberration 8 2.1.7 圖片區塊一致性(Image Patch Consistency) 9 第三章 研究方法 11 3.1 系統概述 11 3.2 特徵提取器 12 3.3 相似度網路 15 3.4 Refinement 19 3.4.1 區塊比對方法與閥值選擇 20 3.4.2 邊緣細化 24 3.5 整合 29 第四章 實驗結果 30 4.1 開發環境 30 4.2 訓練資料 30 4.3 偵測結果展示 32 4.4 效能評估 36 4.4.1 評分機制 36 4.4.2 比較表格 38 4.4.3 Ablation Test 39 4.5 失敗案例 40 第五章 結論與未來展望 41 參考文獻 42

    [1] Xiao, P. (2019). Practical Java Programming for IoT, AI, and Blockchain. John Wiley & Sons.
    [2] Anderson, M., & Jiang, J. (2018). Teens, social media & technology 2018. Pew Research Center, 31, 2018.
    [3] Farid, H. (2008). Digital image forensics. Scientific American, 298(6), 66-71.
    [4] Allcott, H., & Gentzkow, M. (2017). Social media and fake news in the 2016 election. Journal of economic perspectives, 31(2), 211-36.
    [5] Salloum, R., Ren, Y., & Kuo, C. C. J. (2018). Image splicing localization using a multi-task fully convolutional network (MFCN). Journal of Visual Communication and Image Representation, 51, 201-209.
    [6] Huh, M., Liu, A., Owens, A., & Efros, A. A. (2018). Fighting fake news: Image splice detection via learned self-consistency. In Proceedings of the European Conference on Computer Vision (ECCV) (pp. 101-117).
    [7] Mayer, O., & Stamm, M. C. (2018, April). Learned forensic source similarity for unknown camera models. In 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 2012-2016). IEEE.
    [8] Liu, Q. (2011, November). Detection of misaligned cropping and recompression with the same quantization matrix and relevant forgery. In Proceedings of the 3rd international ACM workshop on Multimedia in forensics and intelligence (pp. 25-30). ACM.
    [9] Huang, F., Huang, J., & Shi, Y. Q. (2010). Detecting double JPEG compression with the same quantization matrix. IEEE Transactions on Information Forensics and Security, 5(4), 848-856.
    [10] Popescu, A. C., & Farid, H. (2005). Exposing digital forgeries by detecting traces of resampling. IEEE Transactions on signal processing, 53(2), 758-767.
    [11] Swaminathan, A., Wu, M., & Liu, K. R. (2008). Digital image forensics via intrinsic fingerprints. IEEE transactions on information forensics and security, 3(1), 101-117.
    [12] Fu, D., Shi, Y. Q., & Su, W. (2007, February). A generalized Benford’s law for JPEG coefficients and its applications in image forensics. In Security, Steganography, and Watermarking of Multimedia Contents IX (Vol. 6505, p. 65051L). International Society for Optics and Photonics.
    [13] Huang, Y., Lu, W., Sun, W., & Long, D. (2011). Improved DCT-based detection of copy-move forgery in images. Forensic science international, 206(1-3), 178-184.
    [14] Fan, Z., & De Queiroz, R. L. (2003). Identification of bitmap compression history: JPEG detection and quantizer estimation. IEEE Transactions on Image Processing, 12(2), 230-235.
    [15] Johnson, M. K., & Farid, H. (2007). Exposing digital forgeries in complex lighting environments. IEEE Transactions on Information Forensics and Security, 2(3), 450-461.
    [16] Johnson, M. K., & Farid, H. (2007, June). Exposing digital forgeries through specular highlights on the eye. In International Workshop on Information Hiding (pp. 311-325). Springer, Berlin, Heidelberg.
    [17] Zhang, W., Cao, X., Zhang, J., Zhu, J., & Wang, P. (2009, June). Detecting photographic composites using shadows. In 2009 IEEE International Conference on Multimedia and Expo (pp. 1042-1045). IEEE.
    [18] Lukáš, J., Fridrich, J., & Goljan, M. (2006). Digital camera identification from sensor pattern noise. IEEE Transactions on Information Forensics and Security, 1(2), 205-214.
    [19] Chen, M., Fridrich, J., Goljan, M., & Lukás, J. (2008). Determining image origin and integrity using sensor noise. IEEE Transactions on information forensics and security, 3(1), 74-90.
    [20] Filler, T., Fridrich, J., & Goljan, M. (2008, October). Using sensor pattern noise for camera model identification. In 2008 15th IEEE International Conference on Image Processing (pp. 1296-1299). IEEE.
    [21] Swaminathan, A., Wu, M., & Liu, K. R. (2007). Nonintrusive component forensics of visual sensors using output images. IEEE Transactions on Information Forensics and Security, 2(1), 91-106.
    [22] Cao, H., & Kot, A. C. (2009). Accurate detection of demosaicing regularity for digital image forensics. IEEE Transactions on Information Forensics and Security, 4(4), 899-910.
    [23] Chen, C., & Stamm, M. C. (2015, November). Camera model identification framework using an ensemble of demosaicing features. In 2015 IEEE International Workshop on Information Forensics and Security (WIFS) (pp. 1-6). IEEE.
    [24] Ojala, T., Pietikainen, M., & Harwood, D. (1994, October). Performance evaluation of texture measures with classification based on Kullback discrimination of distributions. In Proceedings of 12th International Conference on Pattern Recognition (Vol. 1, pp. 582-585). IEEE.
    [25] Ojala, T., Pietikäinen, M., & Mäenpää, T. (2002). Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis & Machine Intelligence, (7), 971-987.
    [26] Xu, G., & Shi, Y. Q. (2012, July). Camera model identification using local binary patterns. In 2012 IEEE International Conference on Multimedia and Expo (pp. 392-397). IEEE.
    [27] MacEvoy B. (2013). Astronomical Optics. Retrieved May 3, 2018, from https://www.handprint.com/ASTRO/ae4.html
    [28] Johnson, M. K., & Farid, H. (2006, September). Exposing digital forgeries through chromatic aberration. In Proceedings of the 8th workshop on Multimedia and security (pp. 48-55). ACM.
    [29] Van, L. T., Emmanuel, S., & Kankanhalli, M. S. (2007, July). Identifying source cell phone using chromatic aberration. In 2007 IEEE International Conference on Multimedia and Expo (pp. 883-886). IEEE.
    [30] Tuama, A., Comby, F., & Chaumont, M. (2016, December). Camera model identification with the use of deep convolutional neural networks. In 2016 IEEE International workshop on information forensics and security (WIFS) (pp. 1-6). IEEE.
    [31] Chen, J., Kang, X., Liu, Y., & Wang, Z. J. (2015). Median filtering forensics based on convolutional neural networks. IEEE Signal Processing Letters, 22(11), 1849-1853.
    [32] Bayar, B., & Stamm, M. C. (2016, June). A deep learning approach to universal image manipulation detection using a new convolutional layer. In Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia Security (pp. 5-10).
    [33] Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., & Shah, R. (1994). Signature verification using a" siamese" time delay neural network. In Advances in neural information processing systems (pp. 737-744).
    [34] Neculoiu, P., Versteegh, M., & Rotaru, M. (2016, August). Learning text similarity with siamese recurrent networks. In Proceedings of the 1st Workshop on Representation Learning for NLP (pp. 148-157).
    [35] Li, B., Yan, J., Wu, W., Zhu, Z., & Hu, X. (2018). High performance visual tracking with siamese region proposal network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 8971-8980).
    [36] Hadsell, R., Chopra, S., & LeCun, Y. (2006, June). Dimensionality reduction by learning an invariant mapping. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06) (Vol. 2, pp. 1735-1742). IEEE.
    [37] Rother, C., Kolmogorov, V., & Blake, A. (2004). " GrabCut" interactive foreground extraction using iterated graph cuts. ACM transactions on graphics (TOG), 23(3), 309-314.
    [38] Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing, 13(4), 600-612.
    [39] Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE transactions on systems, man, and cybernetics, 9(1), 62-66.
    [40] Dai, J., He, K., & Sun, J. (2015). Boxsup: Exploiting bounding boxes to supervise convolutional networks for semantic segmentation. In Proceedings of the IEEE international conference on computer vision (pp. 1635-1643).
    [41] Lin, D., Dai, J., Jia, J., He, K., & Sun, J. (2016). Scribblesup: Scribble-supervised convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 3159-3167).
    [42] Maninis, K. K., Caelles, S., Pont-Tuset, J., & Van Gool, L. (2018). Deep extreme cut: From extreme points to object segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 616-625).
    [43] Boykov, Y. Y., & Jolly, M. P. (2001, July). Interactive graph cuts for optimal boundary & region segmentation of objects in ND images. In Proceedings eighth IEEE international conference on computer vision. ICCV 2001 (Vol. 1, pp. 105-112). IEEE.
    [44] Boykov, Y., & Kolmogorov, V. (2004). An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE transactions on pattern analysis and machine intelligence, 26(9), 1124-1137.
    [45] Shullani, D., Fontani, M., Iuliani, M., Al Shaya, O., & Piva, A. (2017). Vision: a video and image dataset for source identification. EURASIP Journal on Information Security, 2017(1), 15.
    [46] IEEE Signal Processing Society (2017, December). IEEE's Signal Processing Society - Camera Model Identification. Retrieved February 02, 2018 from https://www.kaggle.com/c/sp-society-camera-model-identification
    [47] Gloe, T., & Böhme, R. (2010, March). The'Dresden Image Database'for benchmarking digital image forensics. In Proceedings of the 2010 ACM Symposium on Applied Computing (pp. 1584-1590). Acm.
    [48] De Carvalho, T. J., Riess, C., Angelopoulou, E., Pedrini, H., & de Rezende Rocha, A. (2013). Exposing digital image forgeries by illumination color classification. IEEE Transactions on Information Forensics and Security, 8(7), 1182-1194.
    [49] Jaccard, P. (1912). The distribution of the flora in the alpine zone. 1. New phytologist, 11(2), 37-50.
    [50] Ferrara, P., Bianchi, T., De Rosa, A., & Piva, A. (2012). Image forgery localization via fine-grained analysis of CFA artifacts. IEEE Transactions on Information Forensics and Security, 7(5), 1566-1577.
    [51] Ye, S., Sun, Q., & Chang, E. C. (2007, July). Detecting digital image forgeries by measuring inconsistencies of blocking artifact. In 2007 IEEE International Conference on Multimedia and Expo (pp. 12-15). Ieee.
    [52] Mahdian, B., & Saic, S. (2009). Using noise inconsistencies for blind image forensics. Image and Vision Computing, 27(10), 1497-1503.
    [53] Hu, J., Shen, L., & Sun, G. (2018). Squeeze-and-excitation networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 7132-7141).
    [54] Reddit.com. (2005). Photoshop battles. Retrieved July 11, 2020, from https://www.reddit.com/r/photoshopbattles/

    QR CODE
    :::