| 研究生: |
施晨翔 Chen-xiang Shih |
|---|---|
| 論文名稱: |
利用廣波域光譜擷取即時反射係數軌跡 監控並鍍製窄帶濾光片之研究 Research of Narrow Band Pass Filters Deposition by Real Time Reflection Coefficient Loci Monitoring |
| 指導教授: |
李正中
Cheng-chung Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 反射係數軌跡 、光學監控 、薄膜 、窄帶濾光片 、廣波域光譜 |
| 外文關鍵詞: | Reflection Coefficient Loci Monitoring, Optical Monitoring, thin film, Narrowband Pass Filter, broadband spectrum |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這個科技不斷進步的時代,光學薄膜被廣泛應用在不同層面的技術上,隨著不同技術需求的提高,對於薄膜成品的要求也越來越嚴格,如何鍍膜製造出完美的光學薄膜成為重要的課題。
本文提出一種新型的監控方式-反射系數軌跡圖監控,此監控方法結合單波長監控停鍍點好判斷之優點,以及廣波域監控可以一次得到多波長的光譜資訊,藉由光學薄膜的基本理論,做擬合、計算得到薄膜的光學常數和物理厚度。以本研究提出的方法做監控,應用在實際的鍍膜過程中,製鍍窄帶濾光片。鍍膜成品與設計光譜比較,中心波長的偏移量小於0.28 nm,穿透率最大值誤差比率小於3.47 %,半高寬寬度較原始設計來的窄0.21 nm。
本研究也探討在對折射率有認知誤差的情況下,對此監控方法做模擬分析,探討反射系數軌跡圖監控是否能夠做到誤差補償的效果,在探討模擬窄帶濾光片中發現,利用反射系數軌跡圖監控做停鍍,中心波長的偏移量小於0.18 nm,穿透率最大值誤差比率小於0.16 %。
With the advance of science and technology, optical thin film coating has been applied extensively in various optoelectronic devices. This is a very important issue to fabricate high quality optical thin films.
The optical monitor is extremely important in precision interference coatings, since it provides error compensation during the fabrication of each thin-film layer.
In the article, we provide a new monitoring method-reflection coefficient loci monitoring which combined the advantages of single-wavelength and broadband monitoring. The single-wavelength monitoring has a clear deposition termination mechanism, and broadband monitoring can obtain many wavelengths at the same time. This new monitoring method use the real-time broadband spectrum measurements to extract the real-time thin film refraction index and thickness. We use the reflection coefficient loci monitoring to fabricate narrowband pass filter (NPF). In the experimental results, we know that the central wavelength of NPF shift less than 0.28 nm, the different of transmittance at the central wavelength is lower than 3.47% closer to the design by the proposed monitoring method.
Besides, we also discuss whether the real-time reflection Coefficient loci monitoring can compensate the errors due to refractive index variation. In the analysis, it shows that the central monitoring wavelength shift less than 0.2 nm, the different of transmittance at the central wavelength is lower than 0.16% compared with the design.
1. C. C. Lee, K. Wu, and M. Y. Ho, " Reflection coefficient monitoring for optical interference coating depositions," Opt. Lett. 38, 1325-1327 (2013).
2. C. C. Lee, and Y. J. Chen, "Multilayer coatings monitoring using admittance diagram," Opt. Express 16, 6119-6124 (2008).
3. 李正中, 薄膜光學與鍍膜技術第六版 (藝軒圖書發行 藝軒圖書文具公司總經銷, 2009).
4. C. C. Lee, and K. Wu, "In situ sensitive optical monitoring with proper error compensation," Opt. Lett. 32, 2118-2120 (2007).
5. K. Wu, C. C. Lee, and T. L. Ni, "Advanced broadband monitoring for thin film deposition through equivalent optical admittance loci observation," Opt. Express 20, 3883-3889 (2012).
6. H. A. Macleod, Thin Film Optical Filters, 3nd ed (Inst. of Physics Publishing 2001). Chap. 2
7. H. A. Macleod, “Turning value monitoring of narrow-band all-dielectirc thin-film optical filters”, Optica Acta, 19, 1-28. (1972).
8. C. Zhang, Y. T. Wang, and W. Q. Lu, "Single-wavelength monitoring method for optical thin-film coating," Opt. Eng. 43, 1439-1444 (2004).
9. R. R. Willey, "Design of blocking filters of any narrow bandwidth," Appl. Optics 46, 1201-1204 (2007).
10. A. Tikhonravov and M. Trubetskov, “Eliminating of cumulative effect of thickness errors in monochromatic monitoring of optical coating production: theory,” Appl. Opt. 46, 2084-2090. (2007).
11. C. C. Lee, K. Wu, C. C. Kuo, and S. H. Chen, "Improvement of the optical coating process by cutting layers with sensitive monitor wavelengths," Opt. Express 13, 4854-4861 (2005).
12. H. A. Macleod, “Monitor of optical coatings”, Appl. Opt., 20, 82-89. (1981).
13. B. Badoil, F. Lemarchand, M. Clathelinaud, and M. Lequime, "Interest of broadband optical monitoring for thin-film filter manufacturing," Appl. Optics 46, 4294-4303 (2007).
14. Q. Y. Cai, Y. X. Zheng, D. X. Zhang, W. J. Lu, R. J. Zhang, W. Lin, H. B. Zhao, and L. Y. Chen, "Application of image spectrometer to in situ infrared broadband optical monitoring for thin film deposition," Opt. Express 19, 12969-12977 (2011).
15. C. Grezesbesset, F. Chazallet, G. Albrand, and E. Pelletier, "Synthesis and research of the optimum condiction for the optical monitoring of non-quarter-wave multilayers," Appl. Optics 32, 5612-5618 (1993).
16. J. C. Zhang, M. Fang, Y. X. Jin, and H. B. He, "Narrow line-width filters based on rugate structure and antireflection coating," Thin Solid Films 520, 5447-5450 (2012).
17. H. A. Macleod, “Error compensation mechanisms in some thin-film monitor systems”, Opt. Acta, 17, 907-930. (1977).
18. B. J. Chun, C. K. Hwangbo, and J. S. Kim, "Optical monitoring of nonquarterwave layers of dielectric multilayer filters using optical admittance," Opt. Express 14, 2473-2480 (2006).