跳到主要內容

簡易檢索 / 詳目顯示

研究生: 柯耀進
Yao-Jin Ke
論文名稱: 雙炔基分子以溶液剪切法製備之薄膜結構及應用於場效電晶體之研究
指導教授: 陶雨台
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 79
中文關鍵詞: 有機場效電晶體溶液剪切雙炔基分子
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雙炔基分子的固態結晶在照光之下可能進行固態聚合,形成具共軛的聚烯炔高分子。而在本研究,我們利用溶液剪切的方法,將雙炔基分子溶於有機溶劑中,利用刮板刮除給予的方向性外力,造成流體的傳輸同時溶劑揮發使雙炔基分子製作成有方向性的薄膜,而後照光聚合獲得一方向性共軛薄膜,並應用於製備場效電晶體。同時也分析了剪切製程中,影響薄膜結構的因素如濃度及速度等。
    結果顯示雙炔基分子在低濃度且低剪切速度下能得到最具方向性聚合之高分子薄膜,長鏈的有機雙炔基分子比較容易拉出較均勻的薄膜,而最好的長鏈雙炔基分子則為10,12-pentacosadiynoic acid,並以拉曼、原子力顯微鏡等儀器測量並佐證膜的表面形貌、晶格排列的性質。
    最後將薄膜應用於有機場效電晶體的半導體層,可透過電性比較觀察到共軛方向與非共軛方向的差異,然而因照光後會薄膜聚合會產生裂縫而阻礙電子傳遞,因此嘗試以二次剪切塗佈優化薄膜,並於電性方面有些許提升。


    The diacetylenic molecules in their crystalline state may undergo topchemical polymerization under UV irradiation or heating to form a conjugated poly(eneyne) polymers. In this work, we prepared the solution of a series of linear diacetylenic molecules in organic solvent and shear the solution on a substrate with a scraper. The external shearing force caused the fluid between wafer and the substrate and then diactetylene molecules were transported while the solvent voporized to give a directional film. Then UV irradiation was applied to initialte polymerization to create directional conjugated film. The film structure was characterized by various tools including AFM, Raman, UV, etc. The film was also used as the conduction channel in the fabrication of field-effect transistor.
    The results show that at low concentration and low shear rate, directional polymer film can best be prepared. The best material to make a good film is 10,12-pentacosadiynoic acid and the film structure was characterized by Raman and atomic force microscopy to confirm the directional morphology and lattice arrangement.
    Finally, the film was used as the semiconductor layer in the fabrication of field-effect transistor. The mobilities along the shearing direction and that orthogonal to the shearing direction are compared. Polymerization was found to cause cracks and defects so that the mobility was diminished. A second solution shearing step over the cracked film appeared to improve the connectivity of the film and results in an order of improvement in electricity.

    目錄 摘要 I Abstract II 目錄 III 圖目錄 IV Chapter 1 緒論 1 1-1 有機場效電晶體簡介 1 1-1-1 有機場效電晶體之元件結構 2 1-1-2 有機場效電晶體之元件原理 3 1-1-3 有機場效電晶體之重要參數 4 1-2 具雙炔化合物 5 Chapter 2 研究動機與方法 10 2-1 溶液製程簡介 10 2-1-1旋轉塗佈 1 2-1-2滴落塗佈 12 2-1-3噴印塗佈 12 2-1-4刮板塗佈 13 2-2 溶液剪切製程之操作原理 14 2-2-1馬倫哥尼效應 15 2-2-2刮板塗佈原理 16 2-3研究動機 17 Chapter 3 實驗 18 3-1 實驗用藥品及材料 18 3-1-1清洗矽晶片所用藥品 18 3-1-2 自組裝單分子薄膜所用藥品 18 3-1-3 雙炔基化合物 19 3-1-4 基材來源 19 3-2 實驗用儀器 19 3-2-1原子力顯微鏡(Atomic Force Microscopy) 19 3-2-2顯微拉曼光譜分析儀(Micro-Raman Spectrumeter) 20 3-2-3真空蒸鍍機 22 3-2-4剪切塗佈機 22 3-2-5偏光顯微鏡 23 3-3 元件製作 24 3-3-1 矽晶片清洗 24 3-3-2 矽晶片表面自組裝前處理 24 3-3-3 以溶液剪切製程製備雙炔基化合物薄膜與其聚合 24 3-3-4 電極製備 25 Chapter 4結果與討論 25 4-1 10,12-pentacosadiynoic acid成膜性觀察 25 4-1-1剪切速度與表面形貌 26 4-1-2溶液濃度與表面形貌 30 4-1-3不同條件下的分子膜整理 32 4-2不同結構之雙炔基分子成膜性觀察 34 4-2-1不同碳數長碳鏈分子 34 4-2-1-1 11,13-pentacosadiynoic acid 35 4-2-1-2 12,14-pentacosadiynoic acid 37 4-2-1-3 13,15-pentacosadiynoic acid 38 4-2-2不同官能基的雙炔基分子 39 4-2-2-1 4-(hexacosa-11,13-diynamido)benzoic acid 39 4-2-2-2 2,7-di(pentacosa-10,12-diyn-1-yl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone 40 4-2-3不同結構之雙炔基分子膜形貌整理 41 4-3 10,12-pentacosadiynoic acid高分子膜表面分析 43 4-3-1 UV-Vis與拉曼光譜分析 43 4-3-2 AFM表面分析 51 4-3-3 一般X-繞射分析與低銳角繞射分析(GIXRD) 55 4-3-4分子排列及聚合整理 57 4-4雙炔基聚合物有機場效電晶體探討 58 4-4-1 雙炔基聚合物有機電晶體製作與量測分析 58 4-5 雙炔基聚合物分子膜表面缺陷後處理 62 Chapter 5 結論 68 參考文獻 69

    參考文獻
    1. Wegner, G., Z. Naturforsch 1969,24,824
    2. Bloorn D. ; Chance, R.R Polydiacetylenes : Synthesis, structure and electronic properties 1985
    3. Schmidt, G. M. J., Solid state photochemistry. Ed.: Verlag Chemie: Wejinheim, 1976
    4. Kazuhiro Takami, Jun Mizuno, Megumi Akai-kasaya, Akira Saito, Masakazu Aono‖, and Yuji Kuwahara J. Phys. Chem. B, 2004, 108 (42), pp 16353
    5. Nalwa, H .S., Miyata, S., ed.; CRC Press: Boca Raton, FL, 1998
    6. Schott,M .J.Phys. Chem. B 2006,110 15864
    7. Carpick, R. W. ; Sasaki, D Y. J. Phys. Comdens. Matter 2004, 16, R679
    8. Binnig, G.: Quate, C. F.; Gerber, Ch. Phys.Rev.Lett 1986, 56, 930
    9. Huo, Q.; Russell, K. .; Leblanc, R, M. Langmuor 1999, 15, 3972
    10. Burs, A. R.: Carpick, R .W; Sasaki, D. Y. Tribology. Letters.2001, 10,89
    11. Carpick, R. W.; Mayer, T. M. ; Sasaki, D. Y.; Burns, A. R. .Langmuir 2000,16,4639
    12. Dobrosavljevic, V.; Stratt, R. M. Physical Review B 1987, 35, 2781
    13. Huo, Q. ; Russel, K. C.: Leblanc, R. M Langmuir 1999, 15, 3972
    14. Batchelder, D. N.; Evans, S.D.; Freeman, T. L. J. Am. Chem. Soc 1994,116,1050
    15. Shand, M. L.; Chance, R. R. Phys. Rev. B 1982, 25,4431
    16. Raz Jelinek ab and Margarita Ritenberga The Royal Society of Chemistry 2013
    17. Chiao-Wei Tseng†, and Yu-Tai Tao Applied Material and Interface VOL. 2 • NO. 11 • 3231–3240 • 2010
    18. Ying Diao,ab Leo Shaw,a Zhenan Bao*a and Stefan C. B. Mannsfeld Energy Environ. Sci., 2014, 7,2145
    19. FrederikC.Krebs Solar EnergyMaterials&SolarCells93(2009)394–412
    20. Zihong Liu, Student Member, IEEE, Héctor A. Becerril, Mark E. Roberts,Yoshio Nishi, Fellow, IEEE, and Zhenan Bao
    21. Marcel Gsänger,† Eva Kirchner,† Matthias Stolte,† Christian Burschka,† IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 56, NO. 2, FEBRUARY 2009Vladimir Stepanenko,†Jens Pflaum,‡ and Frank Würthner*,†J. Am. Chem. Soc. 2014, 136, 2351−2362
    22. Boyu Peng, Zongrong Wang and Paddy Kwok Leung Chan J. Mater. Chem. C, 2016,4, 8628
    23. Bijal B Patel and Ying Diao Nanotechnology 29 (2018) 044004
    24. Kevin L. Gu a, Yan Zhou a, Xiaodan Gu a, b, Hongping Yan a, b, Ying Diao c,
    Tadanori Kurosawa a, Baskar Ganapathysubramanian d, Michael F. Toney b, Zhenan Bao Organic Electronics 40 (2017) 79e87

    QR CODE
    :::