| 研究生: |
洪舜昱 Shun-Yu Hong |
|---|---|
| 論文名稱: |
即時性多角度光譜量測系統,結合電致發光、光致發光及反射率量測 One-snap multi-angle spectroscopy optical system for electroluminescence, photoluminescence and reflectance measurements |
| 指導教授: |
張瑞芬
Jui-Fen Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2017 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 光譜量測 、電致發光 、光致發光 、反射率 |
| 外文關鍵詞: | measurement, electroluminescence, photoluminescence, reflectance |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在即時性多角度光譜量測系統之建立,結合電致發光(Electroluminescence, EL)、光致發光(Photoluminescence, PL)以及反射率 (reflectance)等量測,建立一套三合一的即時量測系統。
系統的光學設計上,光經由物鏡將各角度展開,通過狹縫後定義出空間維度(y-軸),再由光柵將波長維度(x-軸)分光,最終在互補式金屬氧化物半導體(Complementary Metal-Oxide-Semiconductor, CMOS)上形成一波長—角度之二維空間頻譜。整套系統由無焦系統(afocal system)做為基礎原理架設而成,用以匹配光束的尺寸。另外,以外加光源的方式作為光致發光及反射率量測的量測光源。
相較於傳統旋轉光纖量測,即時性多角度光譜量測系統之優點在於迅速及方便性,本系統僅需約一秒鐘即可擷取到待測物之空間頻譜,而旋轉量測光纖通常需要較長的量測時間。另外,本系統的量測方式是將待測物直接靠置在物鏡前端,待測物尺寸僅需大於物鏡之收光孔徑,然而傳統光纖量測中,待測物尺寸和量測距離之相對關係對於空間頻譜的量測影響甚大,量測的變因亦多。
即時性多角度光譜量測系統未來可應用於OLED之空間頻譜量測,且對於具角度相依性的微共振腔元件如有機雷射之研究具有相當大的助益。
This research focuses on the establishment of one-snap multi-angle spectroscopy optical system, which combines electroluminescence (EL), photoluminescence (PL) and reflectance measurements.
In the optical design, the rays are expended by an objective, and the direction of angular dimension (y-axis) is determined by a slit, while the wavelength dimension (x-axis) are separated by a blazed grating. Finally, the rays enter a Complementary Metal-Oxide-Semiconductor (CMOS) and a two dimensional spatial spectrum is formed. The whole system is established on the basis of afocal system tomatch the beam size. In addition, external light sources are applied for the PL and reflectance measurements.
Compared with the conventional fiber-rotation measurement, the one-snap multi-angle spectroscopy optical system has advantages of rapidity and convenience. The angle-resolved spectra can be acquired in nearly one second, whereas the fiber-rotation measurement usually takes a much longer time. Moreover, the measurement of the one-snap system can be easily performed by leaning the device on the front side of objective lens, which only requires the device with a size larger than the bore of objective lens. However, in conventional fiber measurements, the spatial spectra depend strongly on the relationship between the device size and the rotation diameter, with more variables to affect the result.
One-snap multi-angle spectroscopy optical system is believed to greatly benefit the studies of the spatial spectra of OLEDs and microcavity devices such as organic lasers.
[1] Q. Wang, Y. Tao, X. Qiao, J. Chen, D. Ma, C. Yang, and J. Qin, "High-Performance, Phosphorescent, Top-Emitting Organic Light-Emitting Diodes with p–i–n Homojunctions", Adv. Funct. Mater. 21, 1681–1686 (2011).
[2] J. Jang, and S. H. Han, "High-performance OTFT and its application", Curr. Appl. Phys. 6, e17–e21 (2006).
[3] L.M. Chen, Z. Xu, Z. Hong, and Y. Yang, "Interface investigation and engineering-achieving high performance polymer photovoltaic devices", J. Mater. Chem. 20, 2575–2598 (2010).
[4] I. D. W. Samuel* and G. A. Turnbull, "Organic Semiconductor Lasers", Chem. Rev. 107, 1272-1295 (2007).
[5] E. Ahmed, T. Earmme, and S. A. Jenekhe, "New Solution-Processable Electron Transport Materials for Highly Efficient Blue Phosphorescent OLEDs", Adv. Funct. Mater. 21, 3889–3899 (2011).
[6] T. Ye, S. Shao, J. Chen, L. Wang, and D. Ma, "Efficient Phosphorescent Polymer Yellow-Light-Emitting Diodes Based on Solution-Processed Small Molecular Electron Transporting Layer", ACS Appl. Mater. Interfaces 3, 410–416 (2011).
[7] J. S. Park, H. Chae, H. K. Chung, and S. I. Lee, "Thin film encapsulation for flexible AM-OLED: a review", Semicond. Sci. Technol. 26, 034001 (2011).
[8] D. Comoretto, Organic and Hybrid Photonic Crystals, Springer (2015).
[9] D. G. Lidzey, D. D. C. Bradley, T. Virgili, A. Armitage, M. S. Skolnick, and S. Walker, "Room Temperature Polariton Emission from Strongly Coupled Organic Semiconductor Microcavities", Phys. Rev. Lett. 82, 3316 (1999).
[10] R. J. Holmes, and S. R. Forrest, "Strong exciton-photon coupling in organic materials", Org. Electronic. 8, 77 (2007).
[11] V. N. Mahajan, Fundamentals of Geometrical Optics, SPIE Press (2014).
[12] Newport Corporation, Richardson Gratings Technical Note 11-Deter-mination of the Blaze Wavelength, Newport Corporation (2012)
[13] J. W. Goodman, Introduction to Fourier Optics, Roberts and Company Publishers (2005).
[14] C. L. Mulder, K. Celebi, K. M. Milaninia, and M. A. Baldo, "Saturated and efficient blue phosphorescent organic light emitting devices with Lambertian angular emission", Appl. Phys. Lett. 90, 211109 (2007)
[15] M. T. Lee , M. R. Tseng, "Efficient, long-life and Lambertian source of top-emitting white OLEDs using low-reflectivity molybdenum anode and co-doping technology", Curr. Appl. Phys., 616–619 (2008)
[16] C. H. chen and H. W. Huang, OLED: Organic Electroluminescence Materials & Devices, Wu-Nan Book Inc. (2005)
[17] D. Z. Garbuzov, V. Bulovic, P. E. Burrows, S. R. Forrest, "Photoluminescence efficiency and absorption of aluminum-tris-quinolate (Alq3) thin films", Chem. Phys. Lett. 249, 433–437 (1996).
[18] T. Matsushima, Y. Kinoshita, and H. Murata, "Formation of Ohmic hole injection by inserting an ultrathin layer of molybdenum trioxide between indium tin oxide and organic hole-transporting layers", Appl. Phys. Lett. 91, 253504 (2007).
[19] H. B. Lee, S. W. Cho, K. Han, P. E. Jeon, C. N. Whang, K. H. Jeong, K. H. Cho, and Y. J. Yi, " The origin of the hole injection improvements at indium tin oxide/molybdenum trioxide/N,N′N,N′-bis(1-naphthyl)-N,N′N,N′-diphenyl-1,1′ 1,1′-biphenyl- 4,4′4,4′-diamine interfaces", Appl. Phys. Lett. 93, 043308 (2008).
[20] L. S. Hung, C. W. Tang, and M. G. Mason, "Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode", Appl. Phys. Lett. 70, 152 (1997).
[21] J. G. Simmons, "Richardson-Schottky Effect in Solids", Phys. Rev. Lett. 15, 967-968 (1965)
[22] P. Vacca, M. Petrosino, A. Guerra, R. Chierchia, C. Minarini, D. D. Sala, and A. Rubino, "The Relation between the Electrical, Chemical, and Morphological Properties of Indium−Tin Oxide Layers and Double-Layer Light-Emitting Diode Performance", J. Phys. Chem. C 111, 17404-17408 (2007).
[23] R. H. Fowler and L. Nordheim, Electron Emission in Intense Electric Fields, Proc. R. Soc. London Ser. A 119, 173 (1928).
[24] A. J. Heeger, I. D. Parker, Y. Yang, "Carrier injection into semiconducting polymers: Fowler-Nordheim field-emission tunneling", Syn. Metals 67, 23-29 (1994)
[25] C. E. Small, S. W. Tsang, J. Kido, S. K. So, and F. So, "Origin of Enhanced Hole Injection in Inverted Organic Devices with Electron Accepting Interlayer", Adv. Funct. Mater. 22, 3261–3266 (2012).
[26] D. Yokoyama, M. Moriwake, C. Adachi, "Spectrally narrow emissions at cutoff wavelength from edges of optically and electrically pumped anisotropic organic films", J. Appl. Phys.103, 123104 (2008).
[27] S. H. Tang, M. H. Liu, and Y. K. Su, "Stable and highly bright white organic light-emitting diode based on 4,4′4′,4′′4-tris(N-3-methylphenyl-N-phenyl-amino)-triphenylamine", J. Appl. Phys. 100, 083111 (2006)
[28] L. S. Li, M. Guan, G. H. Cao, Y. Y. Li, Y. P. Zeng, "Highly efficient and stable organic light-emitting diodes employing MoO3-doped perylene-3, 4, 9, 10-tetra-carboxylic dianhydride as hole injection layer", Appl. Phys. A 99, 251–254 (2010).
[29] J. F. Chang, M. C. Gwinner, M. Caironi, T. Sakanoue, and H. Sirringhaus, "Conjugated-Polymer-Based Lateral Heterostructures Defined by High-Resolution Photolithography (SI)", Adv. Funct. Mater. 20, 2825-2832 (2010).
[30] Hamamatsu Photonics K.K., "Digital CMOS Camera C11440-22CU Instruction manual", Hamamatsu Photonics K.K. (2016).
[31] Olympus Corporation, Data Sheet UPLSAPO 40X2, Olympus Corporation.