跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張高德
Der Chang
論文名稱: 廣義光子晶體元件之研究與分析
Generalized photonic crystal divices
指導教授: 欒丕綱
Pi-Gang Luan
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 95
語文別: 中文
論文頁數: 123
中文關鍵詞: 光子晶體分光器負折射非均向性超常材料波導
外文關鍵詞: negative refraction, anisotropic metamaterial, photonic crystal, waveguide, beam splitter
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光子晶體是週期性的介電質材料。它的有趣與奇特的電磁特性使其成為最近十年內,奈米光學研究領域內最熱門的研究主題之一。在本論文中我們首先介紹光子晶體的基本物理特性,以及常用的數值演算法;藉由數值計算及模擬,我們可分析(金屬性)光子晶體及其元件的特性。在分析光子晶體波導中,我們會先討論微帶隙的成因;接著針對光子晶體波導在導波時所受到的幾何限制因素(晶格排列),提出一個新的改善方法,並設計出可任意彎曲的介電質柱波導。延伸此波導架構,我們也提出一個可用於對稱及非對稱分波形態的分波器。另外,我們也設計了一種可針對不同極化方向產生正負折射的極化分波器。而在本論文的最後,我們也探討了均向及非均向性超常材料(metamaterial)的特性以及相關的應用。


    Photonic crystals are periodic structures made of dielectric materials. Its fascinating and amazing electromagnetic properties have made it one of the most extensively studied topics in the nano-optics related research fields in the last decade. In this thesis, we introduce the properties of photonic crystal and the numerical algorithms for calculating these properties. By utilizing these numerical methods, we can analyze the characteristics of the (metallic) photonic crystals and design various devices based on them. In the research of photonic crystal waveguide, we study the formation of the mini-stopband. For releasing the geometric restrictions of the photonic crystal waveguide, we propose an improved method, and design periodic dielectric cylinder waveguide which can be bent arbitrarily without losing its wave-guiding ability. Based on this structure, we also propose the symmetrical and asymmetrical configurations of a new type of beam splitter. Besides, we design a polarization beam splitter utilizing both negative and positive refraction. In the final section, we also discuss the optical characteristics of the homogeneous and inhomogeneous metamaterial and their applications.

    中文摘要 I 英文摘要 II 目錄 III 圖目錄 VI 表目錄 XIII 一、 光子晶體簡介 1 1.1 光子晶體的歷史 1 1.2 光子晶體的應用與特色 2 1.3 研究動機 5 1.4 論文架構 7 二、 光子晶體基本理論 8 2.1 晶格、倒晶格與週期函數 8 2.2 波動方程式 9 2.3 邊界條件 12 2.4 布洛赫定理 13 2.5 布里淵區 13 2.6 能帶結構 14 2.7 帶隙成因 15 三、 數值計算方法 18 3.1 傳遞矩陣法(Transfer matrix method) 19 3.1.1 非週期系統下之傳遞矩陣法 19 3.1.2 週期系統下之傳遞矩陣法 22 3.1.3 週期系統下之頻帶結構 23 3.1.4 週期系統下斜向入射之頻帶結構 24 3.2 嚴格耦合波分析(Rigorous coupled-wave analysis) 26 3.2.1 波導光柵 26 3.2.2 嚴格耦合波分析 28 3.3 平面波展開法(Plane wave expansion method) 34 3.3.1 週期性介電質的傅利葉轉換 34 3.3.2 向量形式的平面波展開法 35 3.3.3 純量形式的平面波展開法 37 3.3.4 偏平面的平面波展開法 38 3.4 多重散射法(Multiple scattering method) 42 3.4.1 波源 42 3.4.2 散射體的外部波場 43 3.4.3 散射體的內部波場 44 3.4.4 邊界條件 45 3.4.5 總波場 46 3.4.6 磁場與平均能流 47 3.4.7 平面波源 47 3.5 有限時域差分法(Finite-Difference Time-Domain method) 49 3.5.1 馬克斯威爾方程式及其FDTD形式 49 3.5.2 三維FDTD形式 52 3.5.3 二維FDTD形式 53 3.5.4 邊界條件 55 3.5.5 波源 59 3.5.6 散射場與總場 60 3.5.7 色散介質的FDTD 63 四、 光子晶體之分析與應用 66 4.1 光子晶體波導 67 4.2 週期介電質柱波導 76 4.3 週期介電質柱波導分波器 84 4.4 光子晶體的異常折射行為 91 4.5 金屬性光子晶體 100 4.6 超常材料 107 五、 結論及未來工作 116 六、 參考文獻 118 七、 論文著作列表 123

    [1] L. Brillouin, Wave propagation in periodic structure 2nd, Mineola, New York, (1946).
    [2] E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059 (1987).
    [3] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486 (1987).
    [4] 蔡雅芝, “淺談光子晶體”, 物理雙月刊, 21卷, 4期 (1999).
    [5] A. Yariv, P. Yeh, Optical Waves in Crystals, John Wiley & Sons, New York, 1984.
    [6] Pi-Gang Luan and Zhen Ye, “Acoustic wave propagation in a one-dimensional layered system”, Phys. Rev. E 63, 066611 (2001).
    [7] M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068 (1995)
    [8] J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals—Molding the Flow of Light, Princeton University Press (1995)
    [9] K. Sakoda, Optical Properties of Photonic Crystals, Springer, Berlin (2001).
    [10] Bikash C. Gupta, Chao-Hsien Kuo, and Zhen Ye, “Propagation inhibition and localization of electromagnetic waves in two- dimensional random dielectric systems,” Phys. Rev. E 69, 066615 (2004).
    [11] A. Taflove, Computational Electrodynamics, Artech House, Boston, (1995).
    [12] P. Halevi, A. A. Krokhin and J. Arriaga, “Photonic Crystal Optics and Homogenization of 2D Periodic Composites,’’ Phys. Rev. Lett. 82, 719 (1999).
    [13] A. A. Krokhin, P. Halevi, and J. Arriaga, “Long-wavelength limit (homogenization) for two-dimensional photonic crystals,” Phys. Rev. B. 65, 115208 (2003) .
    [14] Lie-Ming Li, “Two-dimensional photonic crystals: Candidate for wave plates,” Appl. Phys. Lett. 78, 3400 (2001)
    [15] Q. F. Dai, Y. W. Li, and H. Z. Wang, “Broadband two-dimensional photonic crystal wave plate,” Appl. Phys. Lett. 89, 061121 (2006)
    [16] Ohtera, Y., T. Sato, T. Kawashima and T. Tamamura, “Photonic Crystal Polarization Splitters,” Electron. Lett. 35, 1271 (1999.)
    [17] X. Ao and S. He, “Polarization beam splitters based on a two-dimensional photonic crystal of negative refraction,” Opt. Lett. 30, 2152 (2005).
    [18] Alexei A. Erchak, Daniel J. Ripin, Shanhui Fan, Peter Rakich, John D. Joannopoulos, Erich P. Ippen, Gale S. Petrich and Leslie A. Kolodziejski, “Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode,” Appl. Phys. Lett. 78, 563 (2001)
    [19] J. C. Knight, J. Broeng, T. A. Birks, and P. St. J.Russell, “Photonic band gap-guidance in opticalfibers,” Sicience, 282, 1476 (1998)
    [20] Attila Mekis, J. C. Chen, I. Kurland, Shanhui Fan, Pierre R. Villeneuve, and J. D. Joannopoulos, “High Transmission through Sharp Bends in Photonic Crystal Waveguides,” Phys. Rev. Lett. 77, 3787 (1996).
    [21] M. L. Povinelli, Steven G. Johnson, and J. D. Joannopoulos, “Slow-light, band-edge waveguides for tunable time delays,” Opt. Express, 13, 7146 (2005).
    [22] Amnon Yariv, Yong Xu, Reginald K. Lee, and Axel Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711 (1999).
    [23] Kazuhiko Hosomi and Toshio Katsuyama, “A Dispersion Compensator Using Coupled Defects in a Photonic Crystal,” IEEE J. Quantum Electron. 38, 825 (2002).
    [24] M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10696 (2000).
    [25] C. Luo, S.G. Johnson, D.J. Joannopoulos, amd J.B. Pendry, “All-angle negative refraction without negative effective index,” Phys, Rev. B 65, 201104 (2002).
    [26] J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966 (2000).
    [27] D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and Negative Refractive Index,” Science 305, 788 (2004).
    [28] C. Kittel, Introduction to Solid State Physics, 8th Ed., John Wiley & Sons, USA, (2005).
    [29] 周希朗, 電磁理論中的應用數學基礎, 南京大學出版社, (2006).
    [30] D. K. Cheng, Field and Wave Electromagnetics 2nd, Addison-Wesley, New York, (1989).
    [31] J. D. Jackson, Classical electrodynamics 3rd, John Wiley&Sons, New York, (1999).
    [32] 欒丕綱、陳

    QR CODE
    :::