| 研究生: |
陳秋燕 Qiu-Yan Chen |
|---|---|
| 論文名稱: |
古典吉他觸絃與音色之研究 Study of Timbre with Plucking the String of Classical Guitar |
| 指導教授: | 陳啟昌 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 古典吉他 、音色 、有限元素分析法 |
| 外文關鍵詞: | classical guitar, timbre, finite element method |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
過去樂器多使用三色法(Tristimulus)來分析其音色。此方法使用了基頻與各階泛音的強度加成後的比例來定義音色的座標。此座標法在文獻中已用來分類音色對人的感覺。在本研究中,我們發現絃的基頻的振動在不同的量測中,有些基頻聲波封包隨時間呈現指數型衰減,有些卻呈現非指數型衰減。因此我們發現基頻本身的聲音亦會對音色造成影響,然而在許多絃樂器中,基頻的強度常是比泛音強了許多,因此一個絃樂器聲音的基頻音色可以是決定聲音音色的重要關鍵。故本研究針對古典吉他絃的基頻與音色關係進行探討。我們使用了有限元素分析法,模擬古典吉他第一絃的振動,我們使用的不同施力激發條件。我們假設了指甲的不平滑造成激發時施力隨時間的不均勻。計算出絃在施力激發後隨時間的振動。使用短時距傅立葉轉換發現,不平滑的指甲引所起的絃振動(基頻與所有泛音所引起的振動),其振動隨時間波型封包為非指數型衰減。然而基頻的振盪僅觀察到頻率隨時間的飄移。在基頻隨時間的振動封包中,並沒有非指數型下降的現象。我們針對古典吉他第一絃、第二絃、第三絃實驗使用人造手指與馬達撥絃,錄下的聲音使用短時距傅立葉轉換,我們發現基頻並沒有明顯的飄移。但觀察絃的基頻隨時間振動的封包,卻有指數型衰減以及非指數型衰減的情形。本研究的結果,在假設指甲磨擦不均勻施力的條件範圍內,排除了非指數型衰減的情形是由於指甲磨擦所造成的。
In the past, the tristimulus was used for the timbre analysis of musical instruments. The intensity ratio between the fundamental oscillating mode and the overtones are used to define the coordinates in the tristimulus. The timbre can be approximately classified by the coordinates.
In this study, we found that the different types of the vibration decay of the string at the fundamental frequency could significantly result in the different timbres. In our experiment by exciting the first, second and third strings of the classical guitar, at the fundamental frequencies, two types of decay, exponential decay and non-exponential decay, can be observed in the recorded sound. Different timbres can be sensed. Therefore, this study is aimed to understand the physical origins to excite the non-exponential decay of sound of the string of the classical guitar at the fundamental frequency. We suppose that the different types of string vibration decay result from the non-uniform force as the string slices on the rough surface of the nail. We use the finite element analysis method to simulate the vibration of the first string of the classical guitar under the different non-uniform excitation forces. The short-time Fourier transform (STFT) of the vibration is applied to analyze the vibration decay at the fundamental frequency. The significant frequency shift is observed. In this work, the sound of strings of a home-made classical guitar is recorded using an artificial finger controlled by a motor to pluck the strings. The exponential and non-exponential decay of the recorded sound can is observed. The origins of the non-exponential decay are exempted from the non-uniform forces induced by the nail supposed in the simulation of this study.
[1] B. C. Moore, An introduction to the psychology of hearing (Brill, 2012).
[2] G. von Bismarck, "Timbre of steady sounds: A factorial investigation of its verbal attributes," Acta Acustica united with Acustica 30, 146-159 (1974).
[3] A. A. Wieczorkowska, J. Wróblewski, P. Synak, and D. Śle, "Application of temporal descriptors to musical instrument sound recognition," Journal of Intelligent Information Systems 21, 71-93 (2003).
[4] D. L. Wessel, "Timbre space as a musical control structure," Computer music journal, 45-52 (1979).
[5] J. M. Grey, "Multidimensional perceptual scaling of musical timbres," the Journal of the Acoustical Society of America 61, 1270-1277 (1977).
[6] S. McAdams, S. Winsberg, S. Donnadieu, G. De Soete, and J. Krimphoff, "Perceptual scaling of synthesized musical timbres: Common dimensions, specificities, and latent subject classes," Psychological research 58, 177-192 (1995).
[7] J. Marozeau, A. de Cheveigné, S. McAdams, and S. Winsberg, "The dependency of timbre on fundamental frequency," the Journal of the Acoustical Society of America 114, 2946-2957 (2003).
[8] K. Tsumoto, A. Marui, and T. Kamekawa, "The effect of harmonic overtones in relation to “sharpness” for perceived brightness of distorted guitar timbre," the Journal of the Acoustical Society of America 140, 3380-3380 (2016).
[9] H. F. Pollard and E. V. Jansson, "A tristimulus method for the specification of musical timbre," Acta Acustica united with Acustica 51, 162-171 (1982).
[10] C. Saitis, G. P. Scavone, C. Fritz, and B. L. Giordano, "Effect of task constraints on the perceptual evaluation of violins," Acta Acustica united with Acustica 101, 382-393 (2015).
[11] R. Plomp and W. J. M. Levelt, "Tonal consonance and critical bandwidth," the Journal of the Acoustical Society of America 38, 548-560 (1965).
[12] G. E. Starr and M. A. Pitt, "Interference effects in short-term memory for timbre," the Journal of the Acoustical Society of America 102, 486-494 (1997).
[13] F. A. Russo and W. F. Thompson, "An interval size illusion: The influence of timbre on the perceived size of melodic intervals," Perception & psychophysics 67, 559-568 (2005).
[14] C. Fritz, A. Blackwell, I. Cross, B. Moore, and J. Woodhouse, "Investigating English violin timbre descriptors," in Proceedings of the 10th International Conference on Music Perception and Cognition (ICMPC 10), 2008), 638-639.
[15] E. V. Jansson, "Fundamentals of guitar tone," the Journal of the Acoustical Society of America 71, S8-S9 (1982).
[16] C. Traube and J. O. Smith, "Extracting the fingering and the plucking points on a guitar string from a recording," in Proceedings of the 2001 IEEE Workshop on the Applications of Signal Processing to Audio and Acoustics (Cat. No. 01TH8575), (IEEE, 2001), 7-10.
[17] C. Traube and P. Depalle, "Phonetic gestures underlying guitar timbre description," in Proceedings of 8th International Conference on Music Perception and Cognition, 2004), 658-661.
[18] Z. Mohamad, S. Dixon, and C. Harte, "Pickup position and plucking point estimation on an electric guitar," in 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), (IEEE, 2017), 651-655.
[19] V. Fréour, F. Gautier, B. David, and M. Curtit, "Extraction and analysis of body-induced partials of guitar tones," the Journal of the Acoustical Society of America 138, 3930-3940 (2015).
[20] "COMSOL Multiphysics", retrieved https://www.comsol.com/.
[21] R. M. French, Technology of the Guitar (Springer Science & Business Media, 2012).
[22] 章棣華, 卡爾卡西古典吉他教程 (人民音樂出版社, 北京, 1986).
[23] E. V. Jansson and J. Meyer, "Function, construction and quality of the guitar," Stockholm: Royal Swedich Academy of Music (1983).
[24] N. H. Fletcher and T. D. Rossing, The physics of musical instruments (Springer Science & Business Media, 2012).
[25] J. B. Marion, Classical dynamics of particles and systems (Academic Press, 2013).
[26] A. P. French, Vibrations and waves (CRC press, 2017).
[27] H. E. White and D. H. White, Physics and music: the science of musical sound (Courier Corporation, 2014).
[28] R. M. French, Engineering the guitar: theory and practice (Springer Science & Business Media, 2008).
[29] R. Resnick, J. Walker, and D. Halliday, Fundamentals of physics (John Wiley, 1988), Vol. 1.
[30] D. G. Alciatore, Introduction to mechatronics and measurement systems (Tata McGraw-Hill Education, 2007).
[31] 邵. 王勖成, 有限單元法基本原理和數值方法 (清華大學出版社有限公司, 1997).
[32] 王新榮, 有限元素法及其應用 (中央圖書出版社, 1997).
[33] "Tuning Fork", retrieved https://www.comsol.com/model/tuning-fork-8499.
[34] "Classical String Collection" (2013), retrieved https://www.albertaugustine.com/classical.
[35] R. Bader, Computational mechanics of the classical guitar (Springer Science & Business Media, 2006).
[36] "Fast Fourier transform" (2006), retrieved https://www.mathworks.com/help/matlab/ref/fft.html.
[37] 蒙以正, 數位信號處理: 應用 MATLAB (旗標, 2004).
[38] J.-J. Ding, "Time frequency analysis and wavelet transform class note, the Department of Electrical Engineering," National Taiwan University (NTU), Taipei, Taiwan (2007).
[39] "iPhone 6s - 技術規格" (2019, April 11), retrieved https://support.apple.com/kb/SP726?locale=zh_TW&viewlocale=zh_TW.
[40] F. J. Harris, "On the use of windows for harmonic analysis with the discrete Fourier transform," Proceedings of the IEEE 66, 51-83 (1978).