跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林子渝
Tzu-Yu Lin
論文名稱: 鎵奈米顆粒於彈性體基板上之光學性質可調度探討
Investigation of tunable optical properties of gallium nanoparticles on elastomer substrates
指導教授: 陳一塵
I-Chen Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學與工程研究所
Graduate Institute of Materials Science & Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 72
中文關鍵詞: 鎵奈米顆粒電漿子共振聚二甲基矽氧烷彈性體
外文關鍵詞: Gallium, plasmonic, PDMS
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近幾年來可撓式基板與電漿子學受到廣泛的關注,對於電漿子光學來說,其光學性質都可以藉由改變奈米結構與材料本身之幾何形狀、結構大小、週期性排列方式等而加以操控,新興材料鎵奈米顆粒的正在發展,有希望成為新穎材料。而本篇論文主要是探討挑選合適的高分子彈性體基板,並藉由軟微影技術將鎵奈米顆粒轉移至彈性體基板上(PDMS),通過彈性體擁有可調性的獨特性質,利用不同拉伸應力來調整奈米顆粒間的間距,透過紫外-可見光光譜儀的量測,最終可以得知隨著奈米顆粒於彈性體基板的拉伸應力從0%增加到40%,反射特徵峰會從571 nm位移至528 nm,產生藍位移之光學特性,而吸收強度從48%上升至62%,與其他金屬產生不一樣的特性,因此推測為鎵奈米顆粒之光學性質,隨著拉伸應力增加至40%時,耦合強度會快速減弱,緣由於顆粒的間距增加而產生此特性。


    In recent years, great interest has arisen in flexible substrate and plasmonic. Additionally, gallium has emerged as a promising new material for plasmonics among a growing family of novel materials. This dissertation aims to explore that choose a suitable polymer elastomer substrate and gallium nanoparticles transfer to elastomer substrate by soft lithography, because the elastomer (PDMS) has unique tenability, control spacing between nanoparticles via alter the elastomer strain ratio. We use UV-Visible spectrometer to analyze optical properties. Finally, it can be seen that with the tensile stress of the nanoparticles on the elastomer substrate increasing from 0% to 40%, the reflection characteristic peak shifted from 571 nm to 528 nm, resulting in the optical properties of the blue shift, and the absorption intensity increased from 48% To 62%, and other metals have not the same characteristics, it is speculated that the optical properties of gallium. As the tensile stress increases to 40%, the coupling strength decreases rapidly, resulting in an increase in the spacing of the particles.

    目錄 摘要 I Abstract II 圖目錄 VI 表目錄 IX 第一章 緒論 1 1-1前言 1 1-2研究背景 3 第二章 文獻回顧 6 2-1 概論 6 2-2 新穎基板的開發與應用 9 2-2-1 可撓式基板 9 2-2-2 聚二甲基矽氧烷(PDMS) 13 2-3鎵(Gallium) 15 2-4 電漿子學 17 2-4-1電漿子學的發展 17 2-4-2奈米顆粒之表面電漿共振 17 2-4-3 影響電漿子共振之行為 20 2-4-4 各種奈米結構對表面電漿共振之影響 21 2-5 軟微影轉印技術 23 第三章 研究方法 26 3-1研究動機 26 3-2實驗流程與架構 26 3-3 彈性體基板之選用 28 第四章 結果探討 30 4-1轉印技術的開發 30 4-1-1 彈性體之最大拉伸應力 30 4-1-2 基板選用之探討 31 4-1-3 軟微影 32 4-2 光學性質探討 35 4-2-1 尺寸對於奈米顆粒之光學特性 35 4-2-2 奈米顆粒之吸收可調度分析 38 4-2-3 奈米顆粒之可調度分析 43 第五章 結論 53 參考文獻 54

    [1] S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah,M. R. Dokmeci , and H. Altug, Adv. Mater., 23, (2011).
    [2] B. Leea, I. M. Leea, S. Kima, D. H. Oha and L H. link, Journal of Modern Optics , 57, 1479, (2010).
    [3] U. Cataldi, R. Caputo, Y. Kurylyak, G. Klein, M. Chekini, C. Umetonb and T. Burgi, J. Mater. Chem. C, 2, 7927, (2014).
    [4] G. Niklasson, C. Granqvist, J. Mater. Sci., 18, 3475, (1983).
    [5] P. Sciau, A. A. Hashim, The Delivery of Nanoparticles, 1, (2012)
    [6] L. Polavarapua, M. Luis, L. Marza´n, Chem. Phys., 15, 5288, (2013).
    [7] M. Lapine, D. Powell, M. Gorkunov, I. Shadrivov, R. Marqu´es, and Y. Kivshar Appl. Phys. Lett., 95, 084105, (2009).
    [8] M. S. Bar, H. Haick, Nano., 7, 8366, (2013).
    [9] M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, Chem Rev., 111, 3669, (2011).
    [10] W. A. Murray, W. L. Barnes, Adv. Mater., 19, 3771, (2007).
    [11] J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne, Nat. Mater., 7, 442, (2008).
    [12] J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, S. J. Schultz, Chem. Phys., 116, 6755, (2002).
    [13] C. J. Heo, S. H. Kim, S. G. Jang, S. Y. Lee, S. M. Yang, Adv. Mater., 21, 1726, (2009).
    [14] J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, N. J. Halas, Nano Lett., 12, 1660, (2012).
    [15] A. Di Falco, M. Ploschner, T. F. Krauss, J. New, Phys., 12, 113006, (2010).
    [16] H. Kang, C. J. Heo, H. C. Jeon, S. Y. Lee, and S. M. Yang, Appl. Mater. Interfaces, 11, 4569, (2013).
    [17] J. Y. Kim , K. Lee , N. E. Coates , D. Moses , T. Q. Nguyen , M. Dante , A. J. Heeger, Science, 31 , 222, (2007).
    [18] S. I. Na , S. S. Kim , J. Jo , D. Y. Kim, Adv. Mater., 20, 4061, (2008).
    [19] S. H. Park , Y. Jin , J. Y. Kim , S. H. Kim , J. Kim , H. Suh , K. Lee, Adv.Funct. Mater., 17, 3063, (2007).
    [20] T. W. Lee , Y. Byun , B. W. Koo , I. N. Kang , Y. Y. Lyu , C. H. Lee , L. Pu ,
    S. Y. Lee , Adv. Mater., 17, 2180, (2005).
    [21] V. Cannella, M. Izu, S. Jones, S. Wagner, I. C. Cheng, SID Information, (2005).
    [22] Y. Ji , B. Cho , S. Song , T. W. Kim , M. Choe , Y. H. Kahng , and T. Lee, Adv. Mater., 22, 3071, (2010).
    [23] J. S. Park, T. W. Kim, D. Stryakhilev, J. S. Lee, S. G. An, Y. S. Pyo, D. B. Lee, Y. G. Mo, D. U. Jin, and H. K. Chung, Appl. Phys. Lett., 95, 013503, (2009).
    [24] M. G. Kang , H. J. Park, S. H. Ahn, L. J. Guo, Solar Energy Materials & Solar Cells, 94, 1179, (2010).
    [25] L. Polavarapua and L. M. L. Marza´n, Phys. Chem., 15, 5288, (2013).
    [26] J. Lee, P. Lee, H. Lee, D. Lee, S. S. Leea and S. H.n Ko, Nanoscale, 4, 6408, (2012).
    [27] D. S. Hecht, L. Hu and G. Irvin, Adv. Mater., 23, 1482, (2011).
    [28] J. Bowen, D. Cheneler, A. P. G. Robinson, Microelectronic Engineering, 97, 34, (2012). 
    [29] S. C. B. Mannsfeld, Nature Mater., 9, 859, (2010).
    [30] J. C. Lotters, W. Olthuis, P. H. Veltink, P. Bergveld, J. Micromech. Microeng., 7, 45, (1997).
    [31] F. Schneider, J. Draheim, R. Kamberger, U. Wallrabe, Physical, 151, 95, (2009).
    [32] ABCR Research Chemicals and Metals Catalogue Karlsruhe, Germany, (1994)
    [33] N. Tiercelin, P. Coquet, R. Sauleau, V. Senez, H. Fujita1, J. Micromech. Microeng., 16, 2389, (2006).
    [34] X. F. Li, G. T. Fei, X. M. Chen, Y. Zhang, K. Zheng, X. L. Liu and L. D. Zhang EPL (Europhysics Letters), 94, 1, (2011).
    [35] J. M. McMahon, G. C. Schatz, S. K. Gray, Phys. Chem. Chem. Phys., 15, 5415, (2013).
    [36] G. V. Naik, V. M. Shalaev, A. Boltasseva, Adv. Mater., 25, 3264, (2013).
    [37] R. R. Moskalyk, Miner. Eng., 16, 921, (2003).
    [38] M. W. Knight, T. Coenen, Y. Yang, B.J. M. Brenny, M. Losurdo,A.S. Brown, S. H. Everitt, AACS Nano, 9(2), 2049, (2015).
    [39] R. W. Wood, Philos. Mag. 4, 396, (1902).
    [40] U. Fano, J. Opt. Soc. Am., 31, 213, (1941).
    [41] A. Hessel and A. A. Oliner, Appl. Opt. 4, 1275, (1965).
    [42] K. A. Willets,V. Duyne, R. P. Ann., ReV. Phys. Chem., 58, 267, (2006).
    [43] S. A. Maier, H. A. Atwater, J. Appl. Phys., 98, (2005).
    [44] K. A. Willets,. R. P. R.. Duyne, Rev. Phys. Chem., 58, 267, (2007),.
    [45] P. K. Jain and M. A. E. Sayed, Nano Letters, 8, 4347, (2008).
    [46] S. Link, M. A. E-Sayed, J. Phys. Chem. B, 103, 4212, (1999).
    [47] U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters, 25, (1995).
    [48] R. H. J. Doremus, Chem. Phys., 40, 2389, (1964).
    [49] I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, Nano Lett., 10, 4222, (2010).
    [50] P. V. Duyne, Nature Mater., 7, 442, (2008).
    [51] A. M. Matthew, Z. T. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. G. Y. Huang, I. Adesida, R. G. Nuzzo, J. A. Rogers, nature materials, 5, (2006).
    [52] I. Byun, A. WColeman and B. Kim, J. Micromech. Microeng., 23, 085016, (2013).
    [53] M. K. Chaudhury, J. A. Finlay, J. Y. Chung, M. E. Callow & J. A. Callow Biofouling, 21, 41, (2005).
    [54] Z. C. Chen, N. R. Han, Z. Y. Pan, Y. D. Gong, T. C. Chong, and M. H. Hong, Opt. Mater. Express, 1, 151, (2011).
    [55] F. Miyamaru, M. W. Takeda, and K. Taima, Appl. Phys. Express, 2, 042001, (2009).
    [56] T. Tumkur, G. Zhu, P. Black, Y. A. Barnakov, C. E. Bonner, and M. A. Noginov, Appl. Phys. Lett., 99, 151115, (2011).
    [57] Y. K. Choi1, O. Yarimaga1, T. W. Kim, Y. K. Jung, H. G. Park, (2008). http://www.goodfellowusa.com/larger-quantities/polymers/tpx-characteristics/
    [58] M. K. Chaudhury, J. A. Finlay, J. Y. Chung, M. E. Callow & J. A. Callow Biofouling, 21, 41, (2005).
    [59] O. Graudejus, P. Go¨rrn, and S. Wagner, ACS applied materials, 2, 1927, (2010).
    [60] O. Akogwua, D. Kwabi, S. Midturib, M. Eleruja, B. Babatoped, W.O. Soboyejo, Materials Science and Engineering B, 170, 32, (2010).
    [61] M .Losurdo, A. Suvorova, S. Rubanov, K. Hinger4 and A. S. Brown, Nature Materials, 15, 995, (2016).
    [62] V. Ommen, A. H. Di, J. Appl. Phys., 57, 1872, (1985).
    [63] M. A. Correa-Duarte, V. Salgueiriño-Maceira, A. Rinaldi, K. Sieradzki , M. Giersig, L. M. Liz-Marzán, Gold Bulletin, 40, Issue 1, (2007)
    [64] M. G. Millyard, F. M. Huang, R. White, E. Spigone, J. Kivioja and J. J. Baumberg, Appl. Phys. Lett., 100, 073101, (2012).
    [65] P. K. Jain, M. A. El-Sayed, Chem. Phys. Lett., 487, 153, (2010)
    [66] C. Tabor, R. Murali, M. Mahmoud, and M. A. El-Sayed, J. Phys. Chem. A,113, 1946, (2009)
    [67] http://proj.ncku.edu.tw/research/articles/c/20130524/4.html
    [68] J. Kottmann and O. Martin, Opt. Express 8, 655, (2001).
    [69] P. K. Jain, W. Huang, M. A. El-Sayed, Nano Lett., 7 (7), 2080, (2007)

    QR CODE
    :::