跳到主要內容

簡易檢索 / 詳目顯示

研究生: 呂柏宏
Bo-Hong Lyu
論文名稱: 固定自有倉庫容量下損耗性商品之最佳經濟生產批量
Optimal economic production quantity of deteriorate item with fixed warehouse capacity
指導教授: 陳振明
Jen-Ming Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理研究所
Graduate Institute of Industrial Management
畢業學年度: 96
語文別: 中文
論文頁數: 60
中文關鍵詞: 倉庫容量限制損耗性商品數量折扣
外文關鍵詞: Deteriorating items, Warehouse capacity, Quantity discount
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 企業基於種種經濟因素考量,在建置自有倉庫時其容量有一定的限制,一經決定之後便很難再做更動。基於眾多因素,零售端常常會囤積許多商品存貨,而因產品價值有時效性的存在,往往會有損耗的情況發生。
    在一個生產與銷售的產銷系統中,針對損耗性商品考慮有限的規劃週期與零售端的自有倉庫有容量限制,建構出製造端與零售端的聯合總成本,以總成本最小化為目標來增加企業的核心競爭力,若無法變更容量限制,則找尋是否有其他替代方案來降低總成本。
    藉由數學軟體Mathematica 5.2 的幫助,找出產銷系統中最佳的生產次數、最佳週期時間長度以及每週期的最佳生產批量,達到產銷系統總成本極小化的目標。


    An enterprise has some limits on owned warehouse capacity that is constant. Besides retailer often stock a lot of inventories that has characteristic of deterioration. A rented warehouse is used when the ordering quantity exceeds the limited capacity of the owned warehouse, and it is assumed that deterioration rates of items in the two warehouses may be different.
    This study minimize retailers and manufactures total cost to consider fixed warehouse capacity with deterioration items in a finite planning horizon.
    Mathematic software Mathematica 5.2 is used to derive the optimal production times and lots with minimal total cost. Finally, we use a numerical example to illustrate the model.

    論文提要 I Abstract II 目錄 III 表目錄 V 圖目錄 VI 第一章 序論 1 1.1研究背景與動機 1 1.2研究目的 3 1.3研究方法與步驟 4 1.4研究架構 6 第二章 文獻回顧 8 2.1倉庫容量限制之相關文獻 8 2.2損耗性存貨之相關文獻 9 2.3需求模式之相關文獻 11 2.4相關文獻與本研究的比較 12 第三章 模型建構 15 3.1問題描述與定義 15 3.2基本假設與符號說明 15 3.3成本函數建構 17 3.3.1製造端模型建構 17 3.3.2零售端模型建構 18 3.4聯合總成本 20 3.4.1製造端總成本 20 3.4.2零售端總成本 21 3.5考慮數量折扣之聯合總成本 23 4.1數值驗證與比較 24 4.1.1原始模型 24 4.1.2考慮數量折扣之模型 25 4.2敏感度分析 27 4.2.1原始模型 27 4.2.2考慮數量折扣之模型 32 4.3倉庫容量限制對成本的影響 36 4.4商品損耗性對成本的影響 37 4.5數量折扣政策對成本的影響 38 第五章 結論與未來研究方向 40 5.1結論 40 5.2未來研究方向 41 參考文獻 42 附錄 46 一、敏感度分析之表格 46

    [1] 石志強. (2000). 在延遲付款期限下的損耗性存貨模式. 中原大學工業工程學系. 碩士論文.
    [2] 曾郁芳. (2001). 固定自有倉庫容量下倉租具數量折扣之經濟訂購批量模式. 東吳大學會計學系. 碩士論文.
    [3] 陳忠信. (2004). 確定性需求下固定損耗率之易腐性商品聯合存貨模式. 國防管理學院後勤管理研究所 碩士論文.
    [4] 陳炫凱. (2007). 需求與存貨水準相依下損耗性產品的最佳補貨政策. 國立中央大學工業管理研究所 碩士論文.
    [5] Alamri, A.A., Balkhi, Z.T., (2007), The effects of learning and forgetting on the optimal production lot size for deteriorating items with time varying demand and deterioraion rates., International Journal of Production Economics, Vol. 107, pp. 125-138.
    [6] Benkherouf, L., (1997), A deterministic order level inventory model for deteriorating items with two storage facilities., International Journal of Production Economics, Vol.48,pp.167-175.
    [7] Bhaba, R. Sarker, (1997), An order-level lot size inventory model with inventory-level dependent demand and deterioration., International Journal of Production Economic, Vol.48, pp.227-236.
    [8] Bhunia, A.K., Maiti, M., (1994), A two warehouse inventory model for a linear trend in demand., Opsearch, Vol.31,pp.318-329.
    [9] Chang, H. J., and Dye, C. Y., (1999), An EOQ model for deterioration items with time varying demand and partial backlogging., Journal of the Operational Research Society, Vol.50, pp.1176-1182.
    [10] Chen, J.M., and Chen, L.T., (2005). Pricing and production lot-size/scheduling with finite capacity for a deteriorating item over a finite horizon., Computers & Operations research, Vol. 32, pp. 2801-2819.
    [11] Chung, K.J., et al., (2000). A note on EOQ models for deteriorating items under stock dependent selling rate., European Journal of Operational Research, Vol. 124, pp. 550-559.
    [12] Deb, M., and Chaudhuri, K., (1987), “A note on the heuristic for replenishment of trended inventories considering shortages., Journal of the Operational Research Society, Vol.38, pp.459-463.
    [13] Dey, J.K., et al., (2008). Two storage inventory problem with dynamic demand and interval valued lead-time over finite time horizon under inflation and time-value of money., European Journal of Operational Research, Vol. 185, pp. 170-194.
    [14] Dye, C.Y., et al., (2007). Deterministic inventory model for deteriorating items with capacity constraint and time-proportional backlogging rate., European Journal of Operational Research, Vol. 178, pp. 789-807.
    [15] Dye, C.Y., et al., (2007), Determining optimal selling price and lot size with a varying rate of deterioration and exponential partial backlogging., European Journal of Operational Research, Vol. 181, pp. 668-678.
    [16] Ghare, P. M. and Schrader, G. F., (1963). A model for an exponentially decaying inventory., Journal of Industrial Engineering, Vol. 14, No. 5, pp. 238-243.
    [17] Giri, B.C., and Chaudhuri, K.S., (1998). Deterministic models of perishable inventory with stock-dependent demand rate and nonlinear holding cost., European Journal of Operational Research, Vol. 105, pp. 467-474.
    [18] Gupta, R. and Vrat, P., (1986). Inventory model for stock-dependent consumption rate., Opsearch, Vol. 23, No. 1, pp. 19-24.
    [19] Hahn, K.H., Hwang, H. and Shinn, S.W. (2004), A returns policy for distribution channel coordination of perishable items., European Journal of Operational Research, Vol. 152, No. 3, pp.770-780.
    [20] Hariga, M. A., (1995), An EOQ model for deteriorating items with shortages and time-varying demand., Journal of the Operational Research Society, Vol.46, pp.398-404.
    [21] Harris, F.W. (1915), Operations and cost., Chicago.
    [22] Hartely, R.V. (1976), Operation Research: A managerial emphais , good year publishing company., California.
    [23] Hollier, R. H., and Mak, L., (1983), Inventory replenishment polices for deteriorating items in a declining market., International Journal of Production Research, Vol.21, pp.813-826.
    [24] Hou, K.L., (2006). An inventory model for deteriorating items with stock-dependent consumption rate and shortages under inflation and time discounting., European Journal of Operational Research, Vol. 168, pp. 463-474.
    [25] Hsieh, T.-P., et al., (2008). Determining optimal lot size for a two-warehouse system with deterioration and shortages using net present value., European Journal of Operational Research, pp. 182-192
    [26] Lee, C.C., (2006). Two-warehouse inventory model with deterioration under FIFO dispatching policy., European Journal of Operational Research, Vol. 174, pp. 861-873.
    [27] Lee, C.C., and Hsu, S.L., (2007). A Two-Warehouse Production Model for Deteriorating Inventory Items with Time-Dependent Demands., European Journal of Operational Research,
    [28] Misra, R.B. (1975), Optimum production lot size model for a system with deteriorating., International Journal of Production Research, Vol. 15, pp. 495-505.
    [29] Nahmias, S., (1978). Perishable inventory theory: A review. Operations Research, Vol. 30, No. 4, pp. 680-708.
    [30] Padmanabhan, G., and Vrat, P., (1995), EOQ models for perishable items under stock dependent selling rate., European Journal of Operational Research, Vol.86, pp.281-292.
    [31] Panda, S., (2008), Optimal replenishment policy for perishable seasonal products in a season with ramp-type time dependent demand., Computers and Industrial Engineering, Vol. 54, pp. 301-314.
    [32] Papachristos, S., and Skouri, K., (2000), An optimal replenishment policy for deteriorating items with time-varying demand and partial-exponential type-backlogging., Operations Research Letters, Vol.27, pp.175-184.
    [33] Philip, G.C. (1974), A generalized EOQ model for items with Weibull distribution., AIIE Transactions, Vol. 6, pp.159-162.
    [34] Raafat, F., (1991). Survey of literature on continuously deteriorating inventory models., Journal of the Operational Research Society, Vol.42, No.1, pp. 27-37.
    [35] Rajan, A., et al., (1992), Dynamic pricing and ordering decisions by a monopolist. Management Science, Vol.38, pp.240-262.
    [36] Rong, M., et al., (2008). A two warehouse inventory model for a deteriorating item with partially fully backlogged shortage and fuzzy lead time., European Journal of Operational Research, Vol. 189, pp. 59-75.
    [37] Roy, A., et al., (2007), Two storage inventory model with fuzzy deterioration over a random planning horizon., Mathematical and Computer Modelling, Vol. 46, pp. 1419-1433.
    [38] Sarma, K.V.S. (1983), A deterministic inventory model with two levels of storage and an optimum release rule., Operations Research, Vol. 20, pp. 175-180.
    [39] Shah, Y. K., (1977). An order-level lot-size inventory model for deteriorating items., AIIE Transactions, Vol. 9, pp. 108-112.
    [40] Skouri, K., et al., (2007), Inventory models with ramp type demand rate, partial backlogging and Weibull deterioration rate., European Journal of Operational Research,
    [41] T.P.M. Pakkala, K.K. Achary, A deterministic inventory model for deteriorating items with two warehouses and finite replenishment rate., European Journal of Operational Research 57 (1992) pp.71-76.
    [42] Wee, H. M., (1995), A deterministic lot-size inventory model for deterioration items with shortages and a declining market., Computers and Industrial Engineering, Vol.22, pp.345-356.
    [43] Wee, H.M., (1999). Deteriorating inventory model with quantity discount, pricing and partial backordering., International Journal of Production Economics, Vol. 59, pp. 511-518.
    [44] Yang, H.L., (2004). Two-warehouse inventory models for deteriorating items with shortages under inflation., European Journal of Operational Research, Vol. 157, pp. 344-356.

    QR CODE
    :::