跳到主要內容

簡易檢索 / 詳目顯示

研究生: 呂政學
Cheng-Hsueh Lu
論文名稱: 氮化銦鎵/氮化鎵量子井雷射二極體之研製與分析
The Fabrication and Analysis of InGaN/GaN MQWs Laser Diode
指導教授: 綦振瀛
Jen-Inn Chyi
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 94
語文別: 中文
論文頁數: 90
中文關鍵詞: 非輻射複合雷射二極體氮化鎵
外文關鍵詞: GaN, laser diode, non-radiative recombination
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本研究使用氮化鋁銦鎵系列之材料製作藍紫光(405nm)雷射二極體,內容著重在雷射二極體之研製、光場模擬與在臨界電流下的漏電流機制分析,共分為三個部份:
    1. 雷射二極體結構與製程:以低成本、高品質的氮化鎵緩衝層作為基礎,利用氮化銦鎵覆蓋層來實現低P型歐姆接觸電阻,以及使用淺平台結構達成降低串聯電阻目的。
    2. 模擬以氮化鋁鎵替代氮化鎵緩衝層,應用於(FIELO)橫向式成長法之緩衝層及氮化鎵基板之結構,改善光侷限因子。
    3. 利用變溫光電流對應注入電流量測,分析接近於臨界電流下,自發性輻射複合電流及非輻射復合機制,其包括缺陷捕捉電荷漏電流、歐傑復合之漏電流在氮化鎵系列材料中形成原因,並提出降低其成分之方法。
    最終提出結論,探討降低雷射二極體臨界電流方式,以臻至改善元件特性之目的。


    Abstract
    This thesis presents the achievements reached in the development of InGaN/GaN multiple quantum well laser diodes on sapphire substrate.
    1. Using an In0.3Ga0.7N capping layer and shallow mesa structure, which improves the p contact resistance to 9.58×10-5 Ωcm2 and the series resistance to 15 Ω at 100 mA, InGaN/GaN MQWs violet-blue laser diodes with a threshold current 9.4 kA/cm2 have been obtained.
    2. It is shown that the confinement factor increases from 0.01 to 0.038 when replacing the GaN buffer layer with AlGaN for the lasers grown on a GaN substrate or a thick GaN template.
    3. The monomolecular, radiative, and Auger recombination components of the injecting current are investigated for laser diodes grown on GaN buffers with different defect densities. It is found that the monomolecular recombination component dominates in these laser diodes due to the huge defect density. Besides, CHHL is found to be the main Auger recombination process of GaN-based lasers because the effective mass of light hole is extremely small compared to that of the spin-orbital split hole.

    目錄 第一章 序論...........................................................................................1 1.1 藍紫光雷射二極體發展概要..........................................................1 1.2 研究動機與目的..............................................................................3 第二章 氮化銦鎵雷射二極體製程與元件特性...........................5 2.1 磊晶結構..........................................................................................5 2.1.1 氮化銦鎵/氮化鎵超晶格作為覆蓋層結構...........................7 2.2 製作方法與步驟..............................................................................9 2.3 基本元件特性.................................................................................19 2.3.1 電流電壓特性曲線..............................................................19 2.3.2 淺平台結構..........................................................................21 2.3.3 電激發光譜特性探討..........................................................24 2.3.4 光電流輸出特性曲線分析..................................................25 2.4 本章結論.........................................................................................27 第三章 雷射結構光波導的模擬與分析......................................28 3.1 研究動機........................................................................................28 3.2 模擬方法與模型............................................................................28 3.3 脊狀波導雷射之近場模擬分析....................................................31 3.3.1 標準雷射結構分析....................................................31 3.3.2 以氮化鋁鎵緩衝層於氮化鎵基板結構……………34 3.3.3 以FIELO方式成長氮化鋁鎵於氧化鋁基板之結構 ....39 3.4 本章結論.........................................................................................42 第四章 氮化銦鎵雷射二極體載子複合機制之探討................43 4.1 研究動機........................................................................................43 4.2 理論模型與量測方法....................................................................44 4.3 量測結果........................................................................................48 4.3.1 缺陷捕捉載子之非輻射複合與輻射複合探討…....50 4.3.2 歐傑效應所造成非輻射複合探討………………....58 4.4 本章結論.......................................................................................69 第五章 總結與未來展望..................................................................73 參考文獻..................................................................................................75

    參考文獻
    [1] Website of blue-ray organization
    [2] Website of HD-DVD organization
    [3] R. Dingle et al., Apply Phys. Lett. 19,5 (1971)
    [4] X. H. Yang et al., Apply Phys. Lett. 66,1 (1995)
    [5] I. Akasaki et al., Jpn. J. Appl. Phys. Vol. 34 (1995) pp. L1517-1519
    [6] I. Akasaki et al., Electronic Lett. Vol. 32,1105 (1996)
    [7] S. Nakamura et al., Jpn. J. Appl. Phys. Vol. 35 (1996) pp. L74-76
    [8] S. Nakamura et al., Apply Phys. Lett. 69,1477 (1996)
    [9] S. Nakamura et al., Apply Phys. Lett. 69,3034 (1996)
    [10] S. Nakamura et al., Apply Phys. Lett. 69,4056 (1996)
    [11] S. Nakamura et al., Apply Phys. Lett. 70,868 (1997)
    [12] K. Itaya et al., Jpn. J. Appl. Phys. Vol. 35 (1996) pp. L1315-1317
    [13] S. Nakamura et al., Jpn. J. Appl. Phys. Vol. 37 (1998) pp. L309-312
    [14] I. Akasaki et al., phys. stat. sol. (a) 176, 31 (1999)
    [15] Masaaki Onomura et al., IEEE J. Quantum Electronics, Vol. 5, No. 3 (1999)
    [16] Website of Nichia Corp.
    [17] Alfred R. Adams et al.,, IEEE J. Selected Topics in Quantum Electronics, Vol. 8,NO. 4, 801 (2002)
    [18] 張世邦,陳冠廷,潘昌吉, OPT Proceeding, PA-FR1-051 (2005)
    [19] K. Kumakura et al., Jpn. J. Appl. Phys. Vol. 39 (2000) pp. L195-196
    [20] 鄭先發, “P型披覆層對量子井藍色發光2極體發光機制之影響”, 國立中央大學碩士論文 (2001)
    [21] Th. Gessmann et al., J. Appl. Phys. 92, 3740 (2002)
    [22] K. Kumakura et al., Jpn. J. Appl. Phys. Vol. 42 (2003) pp. L2254-2256
    [23] J. W. Graff et al., Apply Phys. Lett. 79, 2737 (2001)
    [24] J. W. Graff et al., Apply Phys. Lett. 80, 986 (2002)
    [25] 林宏誠, “氮化鎵藍紫光雷射二極體之製作與特性分析”, 國立中央大學碩士論文 (2004)
    [26] T. Takeuchi et al., Phys. Stat. sol. (a) 176, 31 (1999)
    [27] S .Nakamura et al., Apply Phys. Lett. 79, 1948 (2001)
    [28] Rsoft Design Group, BeamPROP user menu, chapter 1, pp. 4-21
    [29] Introduction to optical waveguide analysis, chapter 5, pp. 165-231
    [30] 黃子建, “氮化鎵藍紫光雷射二極體研製與光場模擬分析”, 國立中央大學碩士論文 (2005)
    [31] G. P. Agrawal, and N. K. Dutta, “Long-Wavelength Semiconductor Lasers”, 1986A.D, Van Nostrand Reinhold, New York
    [32] Alfred R. Adams, IEEE J. Selected Topics in Quantum Electronics, Vol. 5,NO. 3, 401 (1999)
    [33] Alfred R. Adams, Solid-State Electronics 47 (2003) 501-506
    [34] Y. Narukawa et al., Phys. Rev. B 55, R1938 (1997)
    [35] Takeyoshi Onuma et al., J. Appl. Phys. 95, 2495 (2004)
    [36] S. Jursenas et al., J. Cryst. Growth Vol.281, (2005) 161-167
    [37] M. Gershenzon et al., Apply Phys. Lett. 8, 245 (1966)
    [38] L. A. Coldren, and S. W. Corzine, “Diode Lasers and Photonic Integrated Circuits”, 1995A.D, John Wiley & Sons, Inc., New York
    [39] Hadis Morkoç ,”Nitride Semiconductor and Devices”, 1999A.D, Springer-Verlag Berlin Heidelberg, Germany
    [40] D. C. Reynolds et al., J. Appl. Phys. 80, 594-596 (1996)
    [41] M. A. Gell et al., Phys. Rev. B 34, 2416 (1986)
    [42] M. Fukuda, “Optical Semiconductor Devices”, 1999A.D, John Wiley & Sons, Inc., New York
    [43] S. Nakamura, MRS Vol.2, 5 (1997)
    [44] Shigotoshi Ito et al., phys. stat. sol. (a) 200, 131 (2003)
    [45] L. Marona et al., Apply Phys. Lett. 88, 201111 (2006)
    [46] V. Kümmler et al., Phys. Stat. sol. (a) 194, 419 (2002)
    [47] V. Kümmler et al., Phys. Stat. sol. (a) 194, 414 (2002)
    [48] Tsuyosh Tojyo et al., Jpn. J. Appl. Phys. Vol. 40 (2001) pp. L3206-3210
    [49] O. H. Nam et al., Phys. Stat. sol. (c) 0, 2278 (2003)
    [50] J. K. Son et al., Phys. Stat. sol. (c) 3, 2178 (2006)
    [51] M. Koike et al., Phys. Stat. sol. (a) 188, 9 (2001)
    [52] Shiro Uchida et al., IEEE J. STQE, Vol. 9,NO. 5, 1252 (2003)
    [53] M. Ikeda et al., Phys. Stat. sol. (c) 1, 1461 (2004)
    [54] T. Mukai et al., Phys. Stat. sol. (a) 200, 52 (2003)
    [55] Gen-ichi Hatakoshi et al., Jpn. J. Appl. Phys. Vol. 38 (1999) pp. L1780-1785

    QR CODE
    :::