跳到主要內容

簡易檢索 / 詳目顯示

研究生: 宋政勳
Zheng--xun Song
論文名稱: 直接甲醇燃料電池氣體擴散層之研究
The research of DMFC gas diffusion layer
指導教授: 曾重仁
Chung-jen Tseng
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 能源工程研究所
Graduate Institute of Energy Engineering
畢業學年度: 96
語文別: 中文
論文頁數: 93
中文關鍵詞: DMFC微孔層氣體擴散層
外文關鍵詞: DMFC, gas diffusion layer, microporous layer
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以刮塗法(scrapping method)來製備直接甲醇燃料電池(DMFC)之微孔層,再搭配自製之疏水碳布和商用疏水碳紙做為 DMFC 之氣體擴散層,利用以 PTFE 為主之疏水性微孔層與以 Nafion 為主之親水性微孔層,藉由陰、陽極端不同的實驗參數規劃,找出能使 DMFC發揮最高性能之微孔層與氣體擴散層之組合。
    與PEMFC最大不同處,一般 DMFC 陽極端微孔層跟氣體擴散層之設計除了能幫助甲醇水溶液能均勻、順利地供給陽極端觸媒使用,還需考慮能將陽極所產生之二氧化碳順利地由陽極微孔層和氣體擴散層排除,使觸媒能發揮最大功效。大部份研究顯示,陽極使用親水性微孔層與以疏水碳布為主之氣體擴散層、陰極使用疏水微孔層和疏水碳布之氣體擴散層,能使 DMFC 發揮較佳性能。
    本研究結果顯示,當陽極供給較大流量之甲醇水溶液(6 ml/min)與較低濃度(1.18M)時,反而是陽極端使用20 wt% PTFE 含量之疏水性微孔層,陰極端使用60 wt% PTFE 含量之疏水性微孔層,再搭配10 wt% PTFE 含量疏水碳布作為氣體擴散層能使電池達最大性能,在0.27V時,電流密度達274 mA/cm2、功率密度74.9 mW/cm2,此時陽極端碳黑負載量為1.87 mg/cm2、陰極端碳黑負載量為1.12 mg/cm2。


    The purpose of this study is to investigate the effects of microporous layer (MPL) and gas diffusion layer (GDL) on the performance of direct methanol fuel cell (DMFC). Both carbon cloth and carbon paper are used as the GDL. The scrapping method is used to prepare the MPL. The MPL is made hydrophobic using PTFE and hydrophilic using Nafion. The effects of hydrophobic and hydrophilic treatment on cell performance are studied.
    Unlike in proton exchange membrane fuel cells, the GDL and MPL in DMFCs need to provide the function of carbon dioxide removal as well as uniform fuel distribution. Most previous work shows that using a hydrophilic MPL with hydrophobic carbon cloth at anode and hydrophobic MPL with hydrophobic carbon cloth at cathode results in better DMFC cell performance.
    Results of this work show that, for the condition used in this study, using 20 wt% PTFE hydrophobic MPL at anode and 60 wt% PTFE hydrophobic MPL at cathode with 10 wt% PTFE hydrophobic carbon cloth as the GDL at both anode and cathode exhibit the best cell performance. The carbon black loading in this case is 1.87 mg/cm2 at anode MPL and 1.12 mg/cm2 at cathode MPL. The current density reaches 274 mA/cm2 and the power density reaches 74.9 mW/cm2 at 0.27 V and 50℃.

    摘要 I ABSTRACT II 誌謝 III 目錄 V 表目錄 VIII 圖目錄 X 第一章 緒論 1 1-1 前言 1 1-2 燃料電池主要元件分析 2 1-2-1 質子交換膜 2 1-2-2 觸媒層 3 1-2-3 氣體擴散層 4 1-2-4 流道板(雙極板) 5 1-3 直接甲醇燃料電池電池發電原理與極化現象 6 1-4 研究動機與方向 10 第二章 文獻回顧 12 2-1 疏水碳紙與碳布的特性分析 12 2-2 以不同種類疏水劑用於微孔層技術探討 14 2-3 以不同種類碳黑做為微孔層技術探討 14 2-4 陽極微孔層(MPL,MICROPOROUS LAYER)技術探討 15 2-5 陰極微孔層技術探討 17 第三章 實驗儀器與方法 20 3-1 儀器使用簡介 20 3-1-1 掃描式電子顯微鏡(SEM) 20 3-1-2 加壓式孔徑分析儀(POROSIMETER) 21 3-1-3 加壓式氣體滲透率量測儀 22 3-1-4 接觸角(CONTACT ANGLE)量測儀 23 3-2 燃料電池測試平台 23 3-3 實驗製程與步驟 25 3-3-1 氣體擴散層(碳布)疏水步驟與方法 25 3-3-2 疏水微孔層(整平層)實驗步驟與方法 26 3-3-3 親水微孔層(整平層)實驗步驟與方法 27 3-4 實驗所需藥品與材料 28 3-4-1 實驗參數規劃 30 第四章 結果與討論 31 4-1 A系列微孔層 31 4-2 B系列微孔層 33 4-3 C系列微孔層 36 4-4 D系列微孔層 39 第五章 結論 47 参考文獻 50 附錄 53

    1. 衣寶廉,黃朝榮、林修正校訂,“燃料電池—原理與應用,”五南圖書出版公司(P184、P330)。
    2. 劉宏仁,“探討二元觸媒(鉑-銠)應用電弧電漿法合成奈米碳管之製程研究,”,中央大學機械所碩士學位論文(桃園), 2002
    3. K.T. Jeng, S.F. Lee, G.F. Tsai, C.H. Wang, ”Oxygen mass transfer in PEM fuel cells gas diffusion layers,” Journal of Power Source, 138, 41-50, 2004.
    4. J. Benziger, J. Nehlsen, D. Blackwell, T. Brennan, J. Itescu, ”Water flow in the gas diffusion layer of PEM fuel cells,” Journal of Membrane Science, 261, 98-106, 2005.
    5. H.K. Lee, J.H. Park, D.Y. Kim, T.H. Lee, ”A study on the characteristics of the diffusion layer thickness,” Journal of Power Source, 131, 200-206, 2004.
    6. A. Oedegaard, C. Hebling, A. Schmitz, S. Møller-Holst, R. Tunold, ” Influence of diffusion layer properties on low temperature DMFC,”
    Journal of Power Sources 127, 187–196, 2004.
    7. M.V. Williams, E. Beg, L. Bonville, H.R. Kunz, J.M. Fenton, ” Characterization of Gas Diffusion Layers for PEMFC,” Journal of The Electrochemical Society, 151 (8), A1173-A1180, 2004.
    8. C. Lim, C.Y. Wang, ”Effects of hydrophobic polymer content in GDL
    on power,"Electrochimica Acta, 49, 4149-4156, 2004.
    9. R. Roshandel, B. Farhanieh, E. Saievar-Iranized, ”The Effects of Porosity Distribution variation on PEM fuel cell performance,” Renewable Energy, 30, 1557-1572, 2005.
    10.T.H. Kao, Y.K. Liao, C.H. Liu, ”Effect of graphitization of PAN-based carbon fiber cloth on its use as gas diffusion layers in the proton exchange membrane fuel cells,” Journal of New Carbon Materials, 22, 2007.
    11. G.H Yoon, S.B. Park, E.H. Kim, M.H. Oh, K.S. Cho, S.W. Jeong, S.
    Kim, Y. Park, ”Novel hydrophobic coating process for gas diffusion
    layer in PEMFCs,” Journal of Electroceram, Accepted: 28 August
    2007
    12. M. Neergat, A.K. Shukla, ”Effect of diffusion layer morphology on the performance solid-polymer-electrolyte direct methanol fuel cells,” Journal of Power Sources, 104, 289-294, 2002.
    13. 林威璋, ” Study of micro-porous layer in the catalyst-supporting layer of fuel cell,” 中原大學化學系碩士學位論文(桃園), 2006
    14. J. Zhang, G.P.Yin, Q.Z. Lai, Z.B. Wang, K.D. Cai, P. Liu, ”The influence of anode gas diffusion layer on the performance of low-temp DMFC,” Journal of Power Sources, 168, 453-458, 2007
    15. M.C. Tsai , T.K. Yeh, C.Y. Chenc, C.H. Tsai, ”A catalytic gas diffusion layer for improving the efficiency of a direct methanol fuel cell,” Journal of Electrochemistry Communication , 9, 2299–2303, 2007.
    16. C.H. Wang, H.Y. Du, Y.T. Tsai, C.P. Chenc, C.J. Huang, L.C. Chen, K.H. Chen, H.C. Shih, ”High performance of low electrocatalysts loading on CNT directly grown on carbon cloth for PEMFC,” Journal of Power Source, 171, 55–62, 2007.
    17. F. Liu, C.Y. Wang, ”Water and methanol crossover in direct methanol fuel cells-Effect of anode diffusion media,” Electrotrochimica Acta, 53, 5517-5522, 2008.
    18. K.Y. Song, H.K. Lee, H.T. Kim, ”MEA design for low water crossover in air-breathing DMFC,” Electrotrochimica Acta, 53, 637-643, 2007.
    19.C. Xua, T.S. Zhao, Y.L. He, ”Effect of cathode gas diffusion layer on water transport and cell performance in direct methanol fuel cells,” Journal of Power Source, 171, 268-274, 2007.
    20.C. Lin, T. Wang, F. Ye, Y. Fang, X. Wang, ”Effect of microporous layer preparation on the performance of a direct methanol fuel cell,” Electrochemistry Communications 10, 255-258, 2008.
    21.Q. Mao, G. Sun, S. Wang, H. Sun, Y. Tian, J. Tian, Q. Xin, ” Application of hyperdispersant to the cathode diffusion layer for direct methanol fuel cell,” Journal of Power Sources, 175, 826–832, 2008.
    22. I.D. Morrison, S. Ross, ”Colloidal Dispersions,” John Wiley and Sons, Inc., Publication, New York, 2002.

    QR CODE
    :::