| 研究生: |
葉宇軒 YU-HSUAN YEH |
|---|---|
| 論文名稱: |
探討稻桿經由不同前處理供Bacillus sp.培養之研究 Effects of various pretreatment of rice straw on the cellulase production by Bacillus sp. |
| 指導教授: |
徐敬衡
Chin-hang Shu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 離子液體 、前處理 、木質纖維素 |
| 外文關鍵詞: | ionic liquids, pretreatment, lignocellulose |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
許多農業廢棄物蘊藏了豐富的木質纖維素是被眾多學者們視為重要資源來作為能源的使用,而農業廢棄物稻桿組成中包含將近40%之纖維素,經過前處理能有效去除木質素含量來增加纖維素所占比例,並且使得微生物分解纖維素的效率提升。
本研究主要討論稻桿在經過不同前處理後,作為Bacillus sp.發酵之基質可行性,分別採用鹼處理、離子液體處理及結合上述兩種方式的結合式處理,其中以離子液體選用、毒性測試、重複回收使用之糖化率作為研究重點。
由實驗結果顯示,稻桿經由鹼處理後,纖維素組成由原先37.4%上升至56.6%,經兩種結合式處理上升至65.6%及63.2%;而當 [AMIM]Cl 存在於培養基之濃度超過0.5%時,會對菌體生長造成抑制,[BMIM]Cl濃度在1%內對菌體生長則未有明顯改變;稻桿經酵素水解72小時後糖化率之比較發現結合式處理為85.3%及75.4%,效果明顯優於鹼處理35.1%與未處理時之7.86%;結合式處理經重複使用五次時之糖化率依然能維持初次使用使之83%及93.4%;未經處理稻桿作為發酵基質時之Yp/s為0.044,經結合式處理上升至0.178及0.198。
Lignocellulosic biomass and crop wastes have been considered as potential sustainable feedstocks for energy production. Rice straw is an abundant and attractive lignocellulosic byproduct which contains nearly 40% cellulose. Different pretreatment methods can be used to enhance the digestibility of cellulosic materials.
In this research, we investigated three kinds of pretreatments including alkali-treatment, ionic liquids (ILs)-treatment and combined method. We focused on the choice of ILs, toxicity test and ILs reuse as the research key point.
According to this study, rice straw treated by alkali-treatment can increase cellulose component from 37.4% to 56.6%, treated by two combined methods can increase cellulose component to 65.6% and 63.2%. We discovered when ionic liquid [AMIM]Cl exist over 0.5% in medium would inhibit bacillus sp. growth and ionic liquid [BMIM]Cl compared to [AMIM]Cl , it has lower toxicity to bacteria growth. Rice straw treated by combined method after 72 hours enzyme saccharification could produce 85.3% and 75.4% reducing sugar, which is better than alkali-treatment and untreated rice straw, and after five times reuse still keep 83% and 93.4% relative to the first time. Compared to untreated rice straw, combined method can effective increase Yp/s from 0.044 to 0.178 and 0.198.
陳威廷,2004。纖維素水解菌之培養策略與纖維素水解酵素之鑑定,成功大學化學工程系碩士論文。
林彥妮,2008。以蒸煮爆碎搭配減浸泡前處理法提升稻殼糖化效率的研究,台北科技大學高分子研究所碩士論文。
郭家宏,2009。纖維素之溶解對其酵素醣化及發酵應用之研究,台灣科技達學化學工程系博士論文。
蔡文慶,2010。生質乙醇的生產與發展現況,朝陽科技大學應用化學系碩士論文。
齊倍慶,2001。從堆肥中篩選纖維素分解酵素生產菌及其酵素性質研究,清華大學生命科學所碩士論文。
林佑生、李文乾,2009。科學發展專題報導生質能源。
蘇遠志、黃世佑,1997。微生物化學工程學,台北市。pp. 74-75。
熊腱、葉君、梁文芷,2000。微波對纖維素超分子架構的影響。華南理工大學學報 ( 自然科學版 ) 。28:85-89。
Alexander M., 1977. Introduction to Soil Microbiology, 2nd ed. John Wiley & Sons, New York.p.1-554.
Anderson, J.L., Ding , J., Welton, T., Armstrong, D.W., 2002. Characterizing ionic liquids on the basis of multiple solvation interactions. Journal of the American Chemical Society, 124, 14247-14254.
Beguin P., 1987. Cloning of cellulase gene. Critical reviews in biotechnology 6:129-162.
Beguin, P., Aubert J. P. ,1993. The biological degradation of cellulose.FEMS.Microbiol. Rev. 13 : 25-58.
Bhat M.K., 2000. Cellulase and related enzymes in biotechnology.Biotechol.Adv., Vol. 18, p355-383.
Bisaria V.S. and Ghose T.K., 1981. Biodegradation of cellulostic materials : substrates, microorganisms, enzymes and products. Enzyme Microb.Technol.3 : 90-104.
Carroll, A., Somerville, C., 2009. Cellulosic biofuels.Annu. Rev. Plant Biol. 60, 165–182.
Cavaco-Paulo A, 1998.Mechanism of cellulose action in textile process.Carbohydrate Polymer.34:272-277.
Cosgrove, D. J., 1998. Cell Walls: Structures, Biogenesis, and Expansion. In: Plant Physiology. , In L. Taiz and E. Zeiger, eds. Sunderland: Sinauer Associates, Inc.
Coughlan M.P.,1985. Cellulase : production properties and application. Biochem. Soc. Trans. 13 : 405-406.
Dadi, A.P., Schall, C.A., Varanasi, S., 2007.Mitigation of cellulose recalcitrance toenzymatic hydrolysis by ionic liquid pretreatment.Applied Biochemistry andBiotechnology 137–140 (1–12), 407–421.
Dadi, A.P., Varanasi, S., Schall, C.A., 2006. Enchancement of cellulose saccharification kinetics using an ionic liquid pretreatment step.Biotechnology and Bioengineering, 30, 809-814.
Fan, L. T.,M. M. Gharpuray, Y. H. Lee, 1987. Cellulose hydrolysis Biotechnology Monographs, p. 57. Berlin:Springer-Verlag.
Feng, L., Chen, Z.I., 2008.Research progress on dissolution and functional modification of cellulose in ionic liquids.Journal of Molecular Liquids, 142, 1-5.
Heinze, T., Schwikal, K., Barthel, S., 2005. Ionic liquids as reaction medium in cellulose functionalization. Macromolecular Bioscience, 5, 520-525.
Hon DNS, 2000. Pragmatic approaches to utilization of natural polymers: Challenges andopportunities. In: Frollini E, Leao AL, Mattoso LHC, editors. Natural polymers andagrofibers composites. New York: Marcel Dekker Inc. p. 1–14.
Howard RL, Abotsi E, Jansen van Rensburg EL, Howard S, 2003. Lignocellulose biotechnology:issues of bioconversion and enzyme production. Afr J Biotechnol .2:602–19.
John F, Monsalve G, Medina PIV, Ruiz CAA, 2006.Ethanol production of banana shell andcassava starch. Dyna Universidad Nacional de Colombia. 73:21–7.
Jung E., Lao G., Irwin D., Barr B.K., Benjamin G.S. and Wilson D.B., 1993.DNA sequence and expression in Streptomyces lividans of anexogluc-anase gene and an endoglucocanse gene from Thermomonosporafusca.Appl. Environ. Microbiol.59:3032-3043.
Kadam, K.L., Forrest, L.H., Jacobson, W.A., 2000. Rice straw as a lignocellulosic resource: collection, processing, transportation, and environmental aspects. Biomass Bioenergy 18, 369–389.
Karimi, K., Kheradmankinia, S., Taherzadeh, M.J. 2006. Conversion of rice straw to sugars by dilute-acid hydrolysis.Biomass Bioenerg. 30, 247-253.
Kitchaiya, P.,P. Intanakul, M. Krairiksh, 2003. Enhancement of Enzymatic Hydrolysis of Lignocellulosic Wastes by Microwave Pretreatment Under Atmospheric Pressure. Journal of Wood Chemistry and Technology 23(2): 217-225.
Levy I.,Shami Z. ,and Shoseyov O., 2002. Modification of Polysaccharidesand plants cell wall by endo-β-1,4-Glucanase and cellilose-bindingdomains.Biomolecular Engineering.19:17-30.
McKendry P, 2002. Energy production from biomass: overview of biomass. Bioresour Technol. 83:37–43.
McMillan, J. D., 1994. Enyzmatic Conversion of Biomass for Fuels Production, p. 294-324, In M. E. Himmel, et al., eds. Enymatic Conversion of Biomass for Fuels Production, Vol. 566.ACS, Washington, DC.
Millett, M. A,, M. J. Effland, D. P. Caulfield, 1976. Influence of fine grinding on the hydrolysis of cellulosic materials-acid versus enzymatic. Advances in Chemistry Series. 181:71-89.
Moiser et al., 2005.Features of promising technologies for pretreatmentof lignocellulosic biomass. Bioresource Technology. 96:673–686.
Perez-Diaz N, Marquez-Montesinos F, Autie PM, 2005. Obtencion del carbon activado a partirdel residual solido generado en el beneficio humedo del cafe. Pinar del Rio:CIGET.
Prassad S, Singh A, Joshi HC, 2007. Ethanol as an alternative fuel from agricultural, industrialand urban residues. Resour Conserv Recycl .50:1–39.
Pu, Y., Jiang, N., Ragauskas, A.J., 2007. Ionic liquid as a green solvent for lignin.Journal of Wood Chemistry and Technology, 27, 23-33.
Reguant J, Rinaudo M. Fibres Lignocellulosiques, 2000. En Iniciation a la Chimie et a la Physico-Chimie Macromoleculares. Les polymeres naturels: Structure, modifications,applications. Groupe Francais d''etudes et d''applications des polymeres, France. p. 13.
Rowell MR, 1992. Opportunities for lignocellulosic materials and composites. Emergingtechnologies for material and chemicals from biomass: Proceedings of symposium.Washington, DC: American Chemical Society. p. 26–31.
Sanchez, 2009. Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnology Advances. 27:185–194.
Shaw A,Sandgren M,Ropp TH,Wu S,Bott R,Cameron AD, 2001.The X-ray Crystal Structure of Trichoderma reesei Family 12 Endoglucanase 3,Cell2A,at 1.9A Resolution.J. Molecul.Biol.
Stewart D, Azzini A, Hall A, Morrison I, 1997. Sisal fibers and their constituent non-cellulosicpolymers. Ind Crops Prod .6:17–26.
Sun Y., Cheng J., 2002. Hydrolysis of Lignocellulosic Materials for Ethanol Production: A Review. Bioresour. Tech., 83: 1-11.
Suto M. and Tomita F., 2001.Induction and catabolite repression mechanisms of cellulase in fungi.J.Biosci.Bioeng.Vol.92, p305-311.
Swatloski, R. P., Spear, S. K., Holbrey, J. D., Rogers, R.D., 2002. Dissolution of cellulose with ionic liquids.Journal of the American Chemical Society, 124, 4974-4975.
Tanaka M., Matsuno R., 1990.n-Butylamine and acid-steam Explosion Pretreatments of Rice straw and hardwood : Effects on Substrate Structure and Enzymatic Hydrolysis. Enzyme Microb.Techn., 12 :190-195.
Unsitalo J.M., Nevalainen K.M., Harkki A.M., KnowlesK.C.,andPenttila M.E., 1991.Enzyme production by recombinantTrichoderma reeseistrains.J. Biotechnol. 17:35-50.
Wilkes J. S., Zaworotko M.J., 1992. Air and water stable 1-butyl-methylimidazolium based ionic liquids.Journal of the Chemical society, Chemical Communications. . 965-967.
Wood T.M. and Bhat K.M., 1988.Methods for measuring cellulase activities.Methods in Enzymology, Vol.160, p87-113.
Zavrel, M., Bross, D., Funke, M., Buchs, J., Spiess, A.C., 2009. High-throughput screening for ionic liquids dissolving ( lingo- ) cellulose. Bioresource Technology, 100, 2580-2587.