跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林健均
Chien-chun Lin
論文名稱: 二氧化鈦緻密層對染料敏化太陽能電池特性之影響
Influence on the performance of dye-sensitized solar cells with a TiO2 compact layer
指導教授: 紀國鐘
Guo-chung Chi
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
畢業學年度: 96
語文別: 中文
論文頁數: 64
中文關鍵詞: 染料敏化太陽能電池緻密層
外文關鍵詞: compact layer, dye-sensitized solar cell
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 緻密層用於提升染料敏化太陽能電池特性的研究曾被Petra J. Cameron等人發表過。本研究針對透明導電膜與電解液之間的逆反應情況,以二氧化鈦緻密層沉積於透明導電膜表面,減少電荷複合所造成的轉換效率下降。二氧化鈦緻密層成長方式為磁控濺鍍法以及熱氧化法,而非噴霧熱解法。
    在本研究的染料敏化太陽能電池製程方面,元件光電轉換效率為2%~4%之間,藉此製程觀察二氧化鈦緻密層對電池特性的影響。在本研究設計三種厚度的二氧化鈦薄膜,分別為20nm、50nm和100nm,以及兩種晶體結構即銳鈦礦(Anatase)與金紅石(Rutile)。
    未加入緻密層前,元件的短路電流密度與轉換效率為5.30±0.35
    mA/cm2、2.1±0.2%;加入二氧化鈦緻密層後,在短路電流密度部份,以金紅石型50nm與銳鈦礦型20nm兩者提升程度最佳,分別為8.98±0.57 mA/cm2與7.95±0.35 mA/cm2。在轉換效率部份,銳鈦礦型二氧化鈦在20nm厚度其轉換效率3.7±0.2%;金紅石型二氧化鈦在50nm厚度其轉換效率3.8±0.2%。隨著緻密層厚度增加至100nm,轉換效率下降,推測原因為光穿透率在100nm下僅有50% (參考端為FTO導電玻璃基板)。
    由交流阻抗實驗所得到的Nyquist plot可知,電池的Rh與R1因為加入二氧化鈦緻密層而有下降的現象,無論二氧化鈦緻密層晶體結構為銳鈦礦或是金紅石結構。其中,Rh為FTO導電玻璃之接觸電阻,R1為二氧化鈦緻密層與二氧化鈦光電極之間的電荷傳遞電阻。
    在外加偏壓0.4V下,未加入緻密層元件之暗電流密度為625 μA/cm2,而加入銳鈦礦型緻密層元件之暗電流密度為68 μA/cm2 (20nm)、88 μA/cm2 (50nm)、97 μA/cm2 (100nm);加入金紅石型緻密層元件之暗電流密度為75 μA/cm2 (20nm)、79 μA/cm2 (50nm)、97 μA/cm2 (100nm)。
    二氧化鈦緻密層有效隔絕透明導電膜與電解液介面間的逆反應(back reaction)發生。


    The compact layers used to improve the performance of dye-sensitized solar cells have been reported by Petra J. Cameron et al.. In our study, we applied a new TiO2 compact layer in the interface between the transparent fluorine doped SnO2 (FTO) anode and the electrolyte in order to reduce charge recombination losses. TiO2 compact layers were prepared by the sputtering and thermal oxidations instead of spray pyrolysis.
    The dye-sensitized solar cells with a TiO2 compact layer fabricated in this study, the solar energy conversion efficiency is about 2%~4%.According to this result, we prepared the compact layer with crystal structures as Anatase and Rutile. The thicknesses were varied from 20nm, 50nm, to 100nm.
    Solar cells without the compact layer, their short circuit current and the solar energy conversion efficiency were 5.3±0.35mA/cm2 and 2.1±0.2% respectively. After adding the compact layer, the short circuit current and the solar energy conversion efficiency were both increased, especially for those solar cells with compact layer thinner than 50nm. For the device with 20nm thickness Anatase type TiO2 compact layer, the short circuit current and the solar energy conversion efficiency of the cells were 7.95±0.35mA/cm2 and 3.7±0.2% respectively. For the device with 50nm thickness Rutile type TiO2 compact layer, the short circuit current and the solar energy conversion efficiency of the cells were 8.98±0.57mA/cm2 and 3.8±0.2% respectively. When the compact layer about 100nm thick, the solar energy conversion efficiency of the cell was lower than the thinner compact layer cells.
    Measurements of AC impedance in the Nyquist polt were found that the Rh and R1 in the dye-sensitized solar cell could be reduced by applying the TiO2 compact layer, no matter if the TiO2 compact layer is Anatase type or Rutile type. That is, the contact resistance of the FTO substrate and the charge transfer resistance of the interface between TiO2 compact layer and the TiO2 phtoelectrode were both reduced.
    By comparing the electrical properties of the dye-sensitized solar cells with and without TiO2 compact layer, we also found that the dark current was greatly reduced (68μA/cm2) in the device with TiO2 compact layer with 0.4V forward bias voltage. The dark current density of the cell without compact layer was 625μA/cm2.
    In conclusion, the TiO2 compact layer does prevent the back reaction between the interface of FTO substrate and electrolyte.

    中文摘要……………………………………………………………. I 英文摘要……………………………………………………………. III 誌謝…………………………………………………………………. V 目錄…………………………………………………………………. VI 圖目錄………………………………………………………………. VIII 表目錄………………………………………………………………. X 第一章 緒論 1.1 前言……………………………………………………… 1 1.2 研究動機………………………………………………… 2 表……………………………………………………………………. 4圖……………………………………………………………………. 5 第二章 染料敏化太陽能電池 2.1 染料敏化太陽能電池結構…………………………….. 6 2.2 染料敏化太陽能電池工作原理……………………….. 7 2.3 染料敏化太陽能電池製程…………………………….. 11 2.4 實驗藥品與儀器設備………………………………….. 15 表…………………………………………………………………… 17圖…………………………………………………………………… 18 第三章 二氧化鈦緻密層成長與特性分析 3.1 二氧化鈦緻密層………………………………………. 22 3.2 二氧化鈦緻密層特性分析……………………………. 23 圖…………………………………………………………………… 26第四章 含二氧化鈦緻密層元件特性分析 4.1 元件之暗電流…………………………………………. 32 4.2 元件之內建電阻………………………………………. 34 4.3 元件之轉換效率………………………………………. 35 表…………………………………………………………………… 38 圖…………………………………………………………………… 39 第五章 結論與未來工作 5.1 結論……………………………………………………. 45 5.2 未來工作………………………………………………. 46 參考文獻.............................................. 47

    參考文獻
    [1-1] B. O’Regan, M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature, 353, 737, (1991)
    [1-2] Martin A. Green1, Keith Emery, Yoshihiro Hishikawa and Wilhelm Warta, “Solar Cell Efficiency Tables (Version 31)”, Prog. Photovolt: Res. Appl. 2008; 16:61–67
    [1-3] Michael Grätzel, “Conversion of sunlight to electric power by nanocrystalline
    dye-sensitized solar cells”, Journal of Photochemistry and Photobiology A:
    Chemistry 164 (2004) 3–14
    [1-4] Petra J. Cameron and Laurence M. Peter, “Characterization of Titanium Dioxide Blocking Layers in Dye-Sensitized Nanocrystalline Solar Cells”, J. Phys. Chem. B 2003, 107, 14394-14400
    [1-5] Sarmimala Hore, Rainer Kern, “Implication of device functioning due to back reaction of electrons via the conducting glass substrate in dye sensitized solar cells”, Appl. Phys. Lett., 87, 263504,(2005)
    [1-6] M. Bailes, P. J. Cameron, K. Lobato, and L. M. Peter, “Determination of the Density and Energetic Distribution of Electron Traps in Dye-Sensitized Nanocrystalline Solar Cells”, J. Phys. Chem. B, 2005, 109, 15429-15435
    [1-7] Alison B. Walker, L. M. Peter, K. Lobato, and P. J. Cameron, “Analysis of
    Photovoltage Decay Transients in Dye-Sensitized Solar Cells”, J. Phys. Chem. B, 2006, 110, 25504-25507
    [1-8] S. Y. Huang, G. Schlichthörl, A. J. Nozik, M. Grätzel, and A. J. Frank, “Charge
    Recombination in Dye-Sensitized Nanocrystalline TiO2 Solar Cells”, J. Phys.
    Chem. B, 1997, 101, 2576-2582
    [1-9] Brian A. Gregg, Francüois Pichot, Suzanne Ferrere, and Clark L. Fields, “Interfacial Recombination Processes in Dye-Sensitized Solar Cells and Methods To Passivate the Interfaces”, J. Phys. Chem. B, 2001, 105, 1422-1429
    [1-10] P. J. Cameron and L. M. Peter, “How Does Back-Reaction at the Conducting Glass Substrate Influence the Dynamic Photovoltage Response of Nanocrystalline Dye-Sensitized Solar Cells?”, J. Phys. Chem. B, 2005, 109, 7392-7398
    [2-1] L. Dloczik, “ Dynamic Response of Dye-Sensitized Nanocrystalline Solar Cells: Characterization by Intensity-Modulated Photocurrent Spectroscopy”, J. Phys. Chem. B 101 (1997) 10281
    [2-2] Michael Grätzel, “Photoelectrochemical cells”, Nature, vol 414, 338-344, (2001)
    [2-3] L.M. Peter, N.W. Duffy, R.L. Wang , K.G.U. Wijayantha, “Transport and interfacial transfer of electrons in dye-sensitized nanocrystalline solar cells”, Journal of Electroanalytical Chemistry 524–525 (2002) 127–136
    [2-4] Tapan K.Gupta, Leonard J. Cirignanoa, Kanai S. Shaha, Lany P. MOya, David
    J. Kellya, Michael R. Squillantea, Gerid Enthea, d Greg P. Smestad,
    “Characterization of screen-printed, dye-sensitized, nanocrystalline Ti02 solar cells”, SPIE, 3789, 149, (1999)
    [2-5] Cahen et al., “Nature of Photovoltaic Action in Dye-Sensitized Solar Cells”, J. Phys. Chem. B, 104,2053-2059,(2000)
    [2-6] L.L. Kazmerski, “Photovoltaics: A review of cell and modual technologies”, Renewable Sustainable Energy Rev., 1, 71-170,(1997)
    [2-7] G. J. Meyer, “Efficient light-to Electrical Conversion: Nanocrystalline TiO2 film
    Modified with Inorganic Sensitizers”, J. Chem. Educ., 74, 652, (1997)
    [2-8] A. Hagfeldt, M. Grätzel, “Light Induced Redox Reactions in Nanocrystalline
    Systems”, Chem. Rev., 95, 49, (1995)
    [2-9] D. Cahen, G. Hodes, M. Grätzel, J. F. Guillemoles, I. Riess, “Nature of Photovoltaic
    Action in Dye-Sensitized Solar Cells”, J. Phys. Chem. B, 104, 2053, (2000)
    [2-10] Ryuzi Katoh, Akihiro Furube, Toshitada Yoshihara, Kohjiro Hara, Gaku Fujihashi,
    Shingo Takano, Shigeo Murata, Hironori Arakawa, and M. Tachiya, “Efficiencies of Electron Injection from Excited N3 Dye into Nanocrystalline Semiconductor (ZrO2, TiO2, ZnO, Nb2O5, SnO2, In2O3) Films”, J. Phys. Chem. B 2004, 108, 4818-4822
    [2-11] Zaban et al., “Relative energetics at the semiconductor/sensitizing dye/electrolyte interface”, J. Phys. Chem. B, 1998, 102, 452-460
    [2-12] Zaban et al., “Electric potential distribution and short-range screening in nanocrystalline titanium dioxide films under externally applied bias”, J. Phys. Chem. B, 1997, 101, 7985-7990
    [2-13] Petra J. Cameron and Laurence M. Peter, “Characterization of Titanium Dioxide Blocking Layers in Dye-Sensitized Nanocrystalline Solar Cells”, J. Phys. Chem. B 2003, 107, 14394-14400
    [2-14] Michael Grätzel, “Review Dye-sensitized solar cells”, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 4 (2003) 145–153
    [2-15] N. G. Park, J. van de lagemaat, A. J. Frank, “Comparison of Dye-sensitized
    Rutile- and Anatase-Based Solar Cells” , J. Phys. Chem. B, 104, 8989, (2000).
    [4-1] Liyuan Han , Naoki Koide,Yasuo Chiba, Ashraful Islam, Takehito Mitate, “Modeling of an equivalent circuit for dye-sensitized solar cells:improvement of efficiency of dye-sensitized solar cells by reducing internal resistance”, C. R. Chimie 9 (2006) 645–651
    [4-2] Liyuan Han, Naoki Koide,Yasuo Chiba, Takehito Mitate, “Modeling of an
    equivalent circuit for dye-sensitized solar cells”, Appl. Phys. Lett., Vol.84,(2004),
    2433-2435
    [4-3] R. Kern, R. Sastrawan, J. Ferber, R. Stangl, J. Luther, “Modeling and inter-
    pretation of electrical impedance spectra of dye solar cells operated under open-
    circuit conditions”, Electrochimica Acta 47, (2002), 4213-/4225

    QR CODE
    :::