跳到主要內容

簡易檢索 / 詳目顯示

研究生: 歐怡岑
Yi-tsen Ou
論文名稱: 垂直孔爆破引致環境振動之量測分析
指導教授: 黃俊鴻
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 386
中文關鍵詞: 新烏山嶺引水隧道工程PGV振測試驗爆破振動
外文關鍵詞: New Wu-Shan-Ling Headrace Tunnel Project, PGV, vibration measurement, blast-induced vibration
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隧道開挖考慮到經濟、開挖效率與地質條件上之限制等問題,現行台灣許多隧道開挖經常使用開炸方式。受自然環境的限制,隧道路線可能鄰近結構物或聚落,隧道開炸施工所產生的地盤震動就可能對鄰近之結構物或住家造成環境公害影響,發生工程糾紛甚至損鄰事件。因此,瞭解開炸震動對周遭環境之影響程度與可行之減震對策是隧道施工重要的考量因素。
    本研究為「新烏山嶺引水隧道工程」之前導爆破振動量測試驗,試驗模擬相當於隧道開挖爆破分段起爆之單一及延時最大裝藥量實施爆破,量測爆破時產生之振動量與噪音值,並將量測結果加以分析,分析方法包含振動量衰減曲線分析、傅氏譜以及反應譜比較等,並將量測結果與各國振動管制規範比較,以提供新隧道開挖爆破之開炸設計參考。
    經由周密的規劃與動員,本計畫成功量測到大量的爆破振動歷時資料,包括自由場、地上結構物,隧道結構物與及邊坡上測站的振動資料,對瞭解爆炸振動特性具有參考價值。迴歸所得之PGV隨距離衰減的關係,決定係數極高,隧道東口與西口試驗之迴歸關係具有相當的一致性。傅氏譜分析結果發現自由場近域震波之主頻約在50 Hz,以及結構物自然振動的主頻。反應譜分析結果顯示爆破震波對於長週期結構物影響很小。距離震源大於70 m後,振動量即在各國振動規範之振動容許值範圍內。


    Considering the cost, the efficiency of constructions, the restriction of geological conditions, and other issues, blasting is generally inevitable for excavation in tunnel constructions. The ground vibration induced by blasting may have some negative effects on surrounding structures and neighborhood. Therefore, understanding the impacts of ground vibration induced by blasting is important to tunnel construction.
    This study performed a carefully planned field measurement for ground vibration and sound induced by blasting test, the weight of explosive was the equivalent of the latest design in “New Wu-Shan-Ling Headrace Tunnel Project”, so that the influences of this construction can be estimate. The measured data was analyzed to derive the vibration characteristics, including the velocity attenuation relation, Fourier and response spectra. Also, compared measurement results with worldwide vibration criteria.
    Because of the careful planning and well organized, large amounts of data have been successfully measured. The data include the vibration at free filed, surrounding structures, slopes and the Wu-Shan-Ling headrace tunnel. From the attenuation relationship between PGV and distances, the coefficient of determinations are very high, shows consistency at both east side and west side of tunnel. Fourier spectral analysis founds that free field near by the blasting area has dominant frequency about 50 Hz, also founds the natural vibration frequency of structures. Response spectrum analysis shows that the blasting has small effect on long-period structures. After the distance is greater than 70 m, the ground vibrations are under worldwide acceptance criteria.

    摘要 I ABSTRACT II 誌謝 III 目錄 IV 表目錄 IX 圖目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 研究目的與方法 1 1.3 研究內容 1 第二章 文獻回顧 3 2.1 隧道鑽掘方法 3 2.1.1 隧道鑽炸工法 3 2.1.2 爆破孔介紹 3 2.1.3 炸藥及引爆裝置 4 2.2 開炸引致之環境振動 4 2.3 振動管制回顧 6 2.3.1 工程振動管制準則 7 2.3.1.1 美國USBM振動規範 7 2.3.1.2 德國標準DIN 4150 (1986) 8 2.3.1.3 英國標準BS 5228-2 (2009) 8 2.3.1.4 瑞士標準(1978) 8 2.3.1.5 中國大陸GB6722-2011 爆破安全規程 9 2.3.1.6 黃俊鴻等人建議之振動管制標準(2000) 9 2.3.2 環境振動管制法規 9 第三章 研究方法 19 3.1 彈性波傳基本理論 19 3.1.1 實體波(body wave) 19 3.1.1.1 壓力波(compression wave) 19 3.1.1.2 剪力波(shear wave) 19 3.1.2 表面波(surface wave) 20 3.1.2.1 雷利波(Rayleigh wave) 20 3.1.2.2 勒夫波(Love wave) 20 3.1.3 震波之比較 20 3.2 開炸振動評估模式 21 3.2.1 美國USBM經驗公式 21 3.2.2 中國大陸經驗公式 21 3.3 頻譜分析理論 22 3.3.1 傅氏頻譜分析 22 3.3.2 反應譜 23 3.4 動量測設備 24 3.4.1 振動量測設備 24 3.4.2 量測方法及注意事項 26 3.5 資料處理與分析流程 27 第四章 試驗量測結果與分析 37 4.1 試驗場址概況與試驗規劃設計 37 4.1.1 試驗場址概況 37 4.1.1.1 試驗場址地理位置 37 4.1.1.2 試驗場址地質 37 4.1.2 爆破設計與規劃 37 4.1.2.1 爆破孔位置 37 4.1.2.2 爆破孔設計 38 4.1.2.3 爆破順序 38 4.1.3 監測設計與規劃 39 4.2 量測結果之振動波形 40 4.2.1 隧道東口 41 4.2.2 隧道西口 43 4.2.3 振波比較 45 4.2.4 震波走時曲線 46 4.3 PGV隨距離之衰減 47 4.3.1 各測點PGV與量測距離衰減關係 48 4.3.2 美國USBM經驗公式 49 4.3.3 中國大陸經驗公式 49 4.3.4 單發與延遲爆破衰減情形之比較 50 4.4 振動速度於不同方向之差異性 50 4.5 振動加速度結果分析 51 4.6 傅氏譜分析 52 4.6.1 隧道東口 53 4.6.2 隧道西口 54 4.7 反應譜分析 56 4.7.1 隧道東口 56 4.7.2 隧道西口 59 4.8 試驗結果與各國規範參照 61 4.8.1 美國USBM準則 61 4.8.2 德國標準DIN 4150 (1986) 61 4.8.3 英國標準BS 5228-2 (2009) 63 4.8.4 瑞士標準(1978) 63 4.8.5 中國大陸GB6722-2011 爆破安全規程 63 4.8.6 黃俊鴻等人建議之振動管制標準(2000) 64 4.8.7 噪音管制標準 64 4.9 實際隧道開炸之振動量評估 64 4.9.1 PGV隨距離衰減關係式之建立 65 4.9.2 振動評估對象 65 4.9.3 振動影響評估結果 65 4.9.3.1 工程振動評估 66 4.9.3.2 環境影響評估 69 4.9.3.3 夜間隧道開炸施工考量 70 第五章 結論與建議 126 5.1 結論 126 5.2 建議 127 參考文獻 129 附錄A 隧道東口各測點振動速度歷時記錄圖 A-1 附錄B 隧道西口各測點振動速度歷時記錄圖 B-1 附錄C 隧道東口各測點加速度歷時記錄圖 C-1 附錄D 隧道西口各測點加速度歷時記錄圖 D-1 附錄E 各測點傅氏振幅譜 E-1 附錄F 各測點反應譜 F-1 附錄G 噪音計量測結果 G-1 附錄H 震波走時曲線、初達波波速計算結果 H-1

    [1] Dowding, C. H., Blast Vibration Monitoring and Control, Prentice-Hall, Inc., NJ (1985).
    [2] Siskind, D. E., Stagg, M. S., Kopp, J. W., and Dowding, C.M., “Structure Response and Damage Produced by Ground Vibration from Surface Mine Blasting,” USBM Report 8507 (1980).
    [3] Swedish Standard, “Vibration and Shock-Guidance Levels for Blasting-Induced Vibration in Building,” SS 460 48 66, Stockholm, Sweden (1991).
    [4] BSI British Standard, “Code of Practice for Noise and Vibration Control on Construction and Open Sites-Part 2: Vibration,” BS 5228-2 (2009).
    [5] BSI British Standard, “Guide to Evaluation of Human Exposure to Vibration in Buildings-Part 1: Vibration Sources Other Than Blasting,” BS 6472-1 (2008).
    [6] BSI British Standard, “Guide to Evaluation of Human Exposure to Vibration in Buildings-Part 2: Blasting Induced Vibration,” BS 6472-2 (2008).
    [7] BSI British Standard, “Mechanical Vibration and Shock-Evaluation of Human Exposure to Whole-Body Vibration- Part 4: Guidelines for the Evaluation of the Effects of Vibration and Rotational Motion on Passenger and Crew Comfort in Fixed –Guideway Transport Systems,” BS 2631-4 (2001).
    [8] German Standards Institute, “Structural Vibration Part 3: Effects of Vibration on Structures,” DIN 4150, Part 3 (1996).
    [9] Swiss Association of Standardization, “Effects of Vibration on Construction,” Seefeldstrasse9, CH 8008, Zurich, Switzerland (1978).
    [10] Kuzu, C., “The mitigation of the vibration effects caused by tunnel blasts in urban areas: a case study in Istanbul,” Environmental Geology, Vol. 54, pp. 1075-1080 (2008).
    [11] Ma, G., Hao, H., Zhou, Y., “Assessment of structure damage to blasting induced ground motions,” Engineering Structures, Vol. 22, pp. 1378-1389 (2000).
    [12] Nateghi, R., “Evaluation of blast induced ground vibration for minimizing negative effects on surrounding structures,” Soil Dynamics and Earthquake Engineering, Vol. 43, pp. 133-138 (2012).
    [13] Ozer, U., Kahriman, A., Aksoy, M., Adiguzel, D., and Karadogan, A., “The analysis of ground vibrations induced by bench blasting at Akyol quarry and practical blasting charts,” Environmental Geology, Vol. 54, pp. 737-743 (2008).
    [14] Ozer, U., “Environmental impacts of ground vibration induced by blasting at different rock units on the Kadikoy–Kartal metro tunnel,” Engineering Geology, Vol. 100, pp. 82-90 (2008).
    [15] 中華人民共和國國家標準,「爆破安全规程」,GB6722 (2011)。
    [16] 行政院環境保護署,噪音管制法規,行政院環境保護署,民國102年8月。
    [17] 張瑞麟,「爆破工程之震動」,地工技術,第61期,67-77頁,民國86年6月。
    [18] Hagan, T.N.、Mercer, J.K.,「適用於台灣地區地下開挖工程之安全與經濟開炸方式」,中興工程技術研究發展基金會譯印,台北市,民國八十九年。
    [19] 「烏山嶺第2隧道可行性規劃:工程地質補充調查及試驗專題」,經濟部水利署規劃試驗所,台中市,民國九十九年。
    [20] 黃文等編著,「隧道開炸技術諮詢系統之研究(二)」,交通部台灣區國道新建工程處,台北市,民國八十九年。
    [21] 黃俊鴻,「隧道開炸振動對鄰近結構影響之研究」,榮民工程股份有限公司,台北市,民國八十九年。
    [22] 黃俊鴻、游騰瑞、葉品毅,「隧道開炸振動環境影響評估與技術準則之研訂期中報告」,中興工程顧問股份有限公司,台北市,民國一百年。
    [23] 黃俊鴻、杜東岳,「隧道開炸引致環境振動之量測分析」,中國土木水利工程學刊,第十八卷第三期,337-351頁,民國95年9月。
    [24] 杜東岳,「施工地盤振動特性與數值模擬」,博士論文,國立中央大學,2010。
    [25] 陳慧珊,「煤灰地盤施打擠壓砂樁之施工振動特性」,碩士論文,國立中央大學,2013。

    QR CODE
    :::