跳到主要內容

簡易檢索 / 詳目顯示

研究生: 邱治恒
Chih-Heng Chiu
論文名稱: 850nm光波段次兆赫波高功率、高效能光電發射器
High power and high efficiency Sub-THz Photonic-Transmitters at 850nm wavelength
指導教授: 許晉瑋
Jin-Wei Shi
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 95
語文別: 中文
論文頁數: 95
中文關鍵詞: 次兆赫波分離式傳輸復合行波式光二極體天線
外文關鍵詞: antenna, STR-PD, Sub-THz
相關次數: 點閱:22下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文的研究中我們證實了一個理想的光電發射器,他是整合了低溫成長砷化鎵(LTG-GaAs)為基準的分離式傳輸複合光二極體(STR-PD)和一個槽孔式的微波天線。而利用超快速飛秒光脈衝以及連續波光訊號的照射下,我們的元件幅射出依個強而有利的電脈衝訊號(最大功率4.5mW)而不需要使用Si-lens。而且由傅立葉轉換紅外光譜儀(FTIR)量測之頻譜可以明顯的發現,在我們所設計的槽孔式天線共振頻率為500GHz 的地方我們有最大的功率為300W,與傳統的LTG-GaAs 基準的光電發射器相比,我們的元件在高外部電場(>50kV/cm)操作下時THz 功率並不會出現飽和的限制。


    We demonstrate a novel photonic transmitter, which is composed of a low-temperature-grown GaAs (LTG-GaAs) based separated-transportrecombination photodiode (STR-PD) and a micromachined slot antenna. Under femto-second optical pulse illumination and Continuous-Wave(CW) illumination, this device radiates strong electrical pulses (4.5mW peak power) without the use of a Si-lens. It can be observed in the Fourier Transform Infrared Spectrometer (FTIR) spectrum of radiated pulses that a significant resonance, with a peak power of approximately 300W peak power, occurs at 500GHz, which corresponds to the designed resonant frequency of the slot antenna. The saturation problem related to the output THz power that occurs with the traditional LTG-GaAs based photonic-transmitters when operated under high external applied electrical fields (>50kV/cm) has been eliminated by the use of our device.

    目錄 摘要 I Abstract II 致謝 III 目錄 V 圖目錄 VIII 表目錄 XII 第一章 簡介 1 1-1 850nm光波段的光通訊系統 2 1-2兆赫波的應用 5 1-3論文架構 7 第二章 光檢測器原理與天線結構 9 2-1光二體簡介 9 2-2行波式光二極體原理 11 2-2-1行波式光二極體等效電路 11 2-2-2行波式光二極體頻寬限制 13 2-3傳統的PIN與低溫成長砷化鎵光二極體之磊晶結構原理與問題 17 2-4分離式傳輸復合行波式光二極體 20 2-5吸光層最佳化設計之單載子傳輸行波式光二極體 23 2-6簡略介紹天線結構 27 第三章 主動及被動元件之設計製作 29 3-1 光檢測器設計模擬 29 3-2 光檢測器磊晶設計 34 3-3 側向注入光電發射器製作流程 36 3-3-1曝光顯影製程 36 3-3-2 N-contact金屬化製程 37 3-3-2主動區蝕刻 38 3-3-3 P-contact金屬化製程 39 3-3-4快速熱回火 40 3-3-5元件區蝕刻 40 3-3-6平坦化與絕緣 41 3-3-7金屬導線連接線 42 3-3-8試片研磨與背蝕刻 43 3-3-8元件切割 44 3-4 垂直注入光電轉換器製作流程 46 3-4-1 P-contact金屬化製程 46 3-4-2 主動區蝕刻及N-contact金屬化製程 47 3-4-3快速熱回火及元件區蝕刻 47 3-4-4平坦化與絕緣 48 3-4-5金屬導線連接線 48 3-4-6試片研磨、背蝕刻以及元件切割 49 3-4-7被動元件的金屬化製程 50 3-4-8電路保護及電鍍區定義 51 3-4-9導電層製程 52 3-4-10電鍍製程 52 3-4-11 Flip-chip bound製成 54 第四章 量測討論 60 4-1 DC量測 60 4-2 量測系統 61 4-2-1 pulse量測系統 61 4-2-2 CW量測系統 63 4-3量測結果與討論 67 4-3-1 Pulse量測結果分析及說明 67 4-3-2 Continuous-Wave(CW)量測結果分析及說明 70 4-3-2 Pulse量測以及CW量測結果比較 72 第五章 結論 76 5-1 總結 76 5-2 未來方向 76 參考資料 77

    參考資料
    [1] H. Eisele, A. Rydberg, and G. I. Haddad, “Recent advances in the performance of InP Gunn devices and GaAs TUNNET diodes for the 100-300GHz frequency range and above,” IEEE Trans. Microwave Theory Tech., vol. 48, pp. 626-631, April, 2000.
    [2] Y. P. Gousev, I. V. Altukhov, K. A. Korolev, V. P. Sinis, M. S. Kagan, E. E. Haller, M. A. Odnoblyudov, I. N. Yassievich, and K.-A. Chao, “Widely tunable continuous-wave THz laser,” Appl. Phys. Lett., vol. 75 , pp. 757-759, Aug., 1999.
    [3] S. Barbieri, J. Alton, S. S. Dhillon, H. E. Beere, M. Evans, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. Kohler, A. Tredicucci, and F. Beltram, “Continuous-wave operation of terahertz quantum-cascade lasers,” IEEE J. Quantum Electron., vol. 39, pp. 586-591, April, 2003.
    [4] A. Stohr, A. Malcoci, A. Sauerwald, I. C. Mayorga, R. Güsten, and D. S. Jäger, “Ultra-wide-band traveling-wave photodetectors for photonic local oscillators,” J. of Lightwave Technol., vol. 21, pp. 3062–3070, Dec. 2003.
    [5] H. Ito, F. Nakajima, T. Furuta, and T. Ishibashi,“Continuous THz-wave generation using antenna-integrated uni-travelling-carrier photodiodes,” Semicond. Sci. Technol., vol. 20, S191-8, June, 2005
    [6] H. Ito, T. Furuta, F. Nakajima, K. Yoshino, T. Ishibashi, “Photonic Generation of Continuous THz Wave Using Uni-Traveling-Carrier Photodiode,” J. of Lightwave Technol., vol. 23, pp. 4016-4021, Dec., 2005.
    [7] M.-C. Tien, H. H. Chang, J. Y. Lu, L. J. Chen, S. Y. Chen, R. B. Wu, W. S. Liu, J. I. Chyi, and C. K. Sun, “Device saturation behavior of submillimeter-wave membrane photonic transmitters,” IEEE Photon. Technol. Lett., vol. 16, pp. 873-875, March, 2004.
    [8] S. M. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microwave Theory Tech., vol. 49, pp. 1032-1038, June, 2001.
    [9] N. Zamdmer, Qing Hu, K. A. Mclntosh, and S. Verghese, “ Increase in Response Time of Low-Temeprature-Grown GaAs Photoconductive Switches at High Voltage Bias,” Appl. Phys. Lett., vol. 75, pp. 2313-2315, Oct., 1999.
    [10] J. W. Shi, H. C. Hsu, F.-H. Huang, W. S. Liu, J. I. Chyi, Ja-Yu Lu, Chi-Kuang Sun, and Ci-Liang Pan“Separated-Transport-Recombination p-i-n Photodiode for High-speed and High-power Performance,” IEEE Photon. Technol. Lett., vol.17, pp. 1722-1724, Aug., 2005.
    [11] K. S. Giboney, M. J. W. Rodwell, and J. E. Bowers, “Traveling-wave photodetector theory,” IEEE Trans. Microwave Theory Tech., vol. 45, pp. 1310-1319, Aug. 1997.
    [12] K. C. Gupta, Ramesh Garg, Inder Bahl, Prakash Bhartia, Microstrip Lines and Slotlines, Artech House, Boston London, 1996.
    [13] J. W. Shi, Yu-Tai Li, Ci-Ling Pan, M. L. Lin, Y. S. Wu, W. S. Liu, and J. I. Chyi, “Separated-Transport-Recombination p-i-n Photodiode (STR-PD) with High-Speed and High-Power Performance under Continuous-Wave (CW) Operation,” Conference on Laser and Electro-Optics (CLEO/QELS’2006), USA, OSA Technical Digest, CTuS6, 2006.
    [14] D. H. Martin, and E. Puplett, “Polarised interferometric spectrometry for the millimeter and submillimeter spectrum,” Infared Phys., vol.10, pp.105-109, June, 1970.
    [15] N. Shimizu, N. Watanabe, T. Furuta, and T. Ishibashi, “InP-InGaAs Uni-Traveling-Carrier Photodiode With Improved 3-dB Bandwidth of Over 150GHz,” IEEE Photon. Technol. Lett., vol. 10, pp. 412-414, March, 1998.
    [16]SATOKI KAWANISHI, MEMBER, IEEE, and MASATOSHI SARUWATARI, MEMBER,IEEE, “A Very Wide-Band Frequency Response Measurement System Using Optical Heterodyne Detection.” IEEE Transactions on Instrumentation and Measurement, VOL. 38, NO. 2, pp.569-573 APRIL 1989
    [17] J. Zhang, Y. Hong, S.L. Braunstein and K.A. Shore. “Terahertz pulse generation and detection with LT-GaAs photoconductive antenna” IEE Proc.-Optoelectron., Vol. 151, No. 2, April 2004
    [18] K. Kato, “Ultrawide-Band/High-Frequency Photodetectors,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 1265-1281, Jul., 1999.
    [19] K. P. Yang, P. L. Richards and Y. R. Shen, “Generation of Far-Infrared Radiation by Picosecond Light Pulses in LiNbO3,’’ Appl. Phys. Lett. Vol.19, pp320-323 , 1971
    [20] EKSPLA: an EKSMA group company
    [21] Humphreys, K.; Loughran, J.P.; Gradziel, M.; Lanigan, W.; Ward, T.; Murphy, J.A.; O''Sullivan, C., ”Medical applications of terahertz imaging: a review of current technology and potential applications in biomedical engineering,’’ Proc. EMBC, Vol1, 2004 pp. 1302 - 1305, 2004
    [22] Pardo, J.R.; Cernicharo, J.; Serabyn, E., “Atmospheric transmission at microwaves (ATM): an improved model for millimeter/submillimeter applications,” IEEE Transactions on Antennas and Propagation, Vol.49, No.12, pp.1683 – 1694, Dec. 2001
    [23] Gaidis, M.C.; Pickett, H.M.; Smith, C.D.; Martin, S.C.; Smith, R.P.; Siegel, P.H., “A 2.5-THz receiver front end for spaceborne applications,” IEEE Transactions on Microwave Theory and Techniques, Vol.48, No.4, pp.733 – 739, April 2000
    [24] Kirk Steven Giboney, Ph. D. Thesis, University of California at Santa Barbara, 1995
    [25] Yi-Jen Chiu, Ph. D. Thesis, University of California at Santa Barbara, 1999
    [26]許晉瑋,金屬-半導體-金屬 行波式光偵測器,國立臺灣大學/光電工程學研究所博士論文(2001)
    [27] Y.-L. Huang and C.-K. Sun, “Nonlinear saturation behaviors of high-speed p-i-n photodetectors,” J. of Lightwave Techno., vol. 18, pp. 203-212, Feb., 2000.
    [28] K. J. Williams, R. D. Esman, and M. Degenais, “Nonlinearities in p-i-n Microwave Photodetectors,” J. of Lightwave Techno., vol. 14, pp. 84-96, Jan., 1996.
    [29] S. Gupta, J. F. Whitaker, and G. A. Mourou, “Ultrafast Carrier Dynamics in III-V Semiconductors Grown by Molecular-Beam Epitaxy at Very Low Substrate Temperatures,” IEEE J. of Quantum Electronics, vol. 28, pp.2464-2472, 1992.
    [30] J. P. Ibbetson, Ph. D. Thesis, University of California at Santa Barbara, 1998.
    [31] J.-W. Shi, Y.-H. Chen, K. G. Gan, Y. J. Chiu, John. E. Bowers, M.-C. Tien, T.-M. Liu, and C.-K. Sun, “Nonlinear Behaviors of Low-Temperature-Grown GaAs-Based Photodetectors Around 1.3-μm Telecommunication Wavelength” IEEE Photon. Tech. Lett., vol. 16, pp.242-244, Jan., 2004.
    [32] C.-K. Sun, Y.-Hung Chen, J.-W. Shi, Y.-J. Chiu, K. G. Gan, and J. E. Bowers, “Electron relaxation and transport dynamics in low-temperature-grown GaAs under 1eV optical excitation” Appl. Phys. Lett., vol. 83, pp. 911-913, Aug., 2003.
    [33]Hiroshi Ito, Satoshi Kodama, Yoshifumi Muramoto, Tomofumi Furuta, Tadao Nagatsuma, and Tadao Ishibashi, “High-Speed and High-Output InP–InGaAs Unitraveling-Carrier Photodiodes,” IEEE J. Quantum Electron., vol. 10, pp. 709–727, July/August 2004.
    [34] H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, T. Ishibashi, IEEE J. of Sel. Topics in Quantum Electronics.10, 709 (2004).
    [35] M. Levinshtein, S. Rumyantsev, and M. Shur, Handbook Series on Semiconductor Parameters, (World Scientific, Singapore, 1996), p. 2.
    [36] N. Li, X. Li, S. Demiguel, X. Zheng, J. C. Campbell, D. A. Tulchinsky, K. J. Williams, T. D. Isshiki, G. S. Kinsey, and R. Sudharsansan, IEEE Photon. Technol. Lett. 16, 864 (2004
    [37]Kirk Steven Giboney, Ph. D. Thesis, University of California at Santa Barbara, 1995
    [38]Yi-Jen Chiu, Ph. D. Thesis, University of California at Santa Barbara, 1999
    [39] Blue sky Research''s Circular Laser DeviceVPSL-0809-150-x-9-C
    [40] J. B. D. Soole and H. Schumacher. “Transit-time limited frequency response of ingaas msm photodetectors,” IEEE Transactions on Electron Devices, 37(11): 2285-91, 1990.

    QR CODE
    :::