| 研究生: |
葉青峰 Qing-Feng Ye |
|---|---|
| 論文名稱: |
RP-層狀結構Lan+1Nin(1-x)ConxO3n+1+δ(n=1~3)之質子與氧離子之傳輸性質及其用於P-SOFC陰極之可行性研究 On the transportation of proton and oxygen ions of RP series, Lan+1Nin(1-x)ConxO3n+1+δ(n=1~3) and their potential use as the cathode of P-SOFCs |
| 指導教授: |
林景崎
Jing-Qi Lin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學與工程研究所 Graduate Institute of Materials Science & Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 質子傳導型固態氧化物燃料電池(P-SOFC) 、陰極 、三載子導體氧化物 、Ruddlesden-Popper層狀結構 |
| 外文關鍵詞: | Proton-transferred solid oxide fuel cell (P-SOFC), Ruddlesden-Popper series, Glycine-nitrate process, Co-doped |
| 相關次數: | 點閱:20 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用甘胺酸-硝酸鹽類燃燒反應法製備具有奈米級孔洞之Ruddleson-Popper (RP)層狀結構Lan+1Nin(1-x)ConxO1+3n+δ (n =1, 2, 3)(LNOnCox)陰極粉末。經由調整前驅物水溶液pH值觀察燃燒後與煆燒後的結晶結構與表面形貌;調整不同RP層狀結構之鈣鈦礦層數觀察其電化學、材料熱性質;再以有最佳RP層狀結構之鈣鈦礦層數摻雜不同含量之Co元素觀察結晶結構及電化學性質。評估具有三載子導體氧化物(TCO)此RP層狀結構作為質子傳導型固態燃料電池陰極材料之可行性。實驗結果所示La2NiO4+δ (LNO1)、La3Ni2O7+δ (LNO2)及La4Ni3O10+δ (LNO3)試樣在調整前驅物水溶液pH值經煆燒後由X光繞射分析儀(XRD)前驅物具RP層狀結構之繞射峰(La2O3),由掃描式電子顯微鏡(SEM) 觀察其顆粒尺寸約200 nm~500 nm;由熱重損失分析儀(TGA)分析可發現LNO2有最高的氧空缺氧空缺變化量△δ=-0.114;LNO3摻雜Co元素由XRD分析觀察發現Co含量愈多LNO3的繞射峰往高角度偏移;由四點式量測直流電(Four-Probe DC)測量其粉體導電率,當La4Ni2.1Co0.9O10+δ (LNO3Co0.2)在400 °C時有最高導電率140.5 S/cm。將此成分製備成陰極測量極化曲線測試在700 °C時測得最高功率密度為14.4 mW/cm2;由電化學阻抗頻譜分析儀(EIS)可測得全電池之歐姆阻抗與極化阻抗。歐姆阻抗17.6 Ω/cm2,極化阻抗為2.04 Ω/cm2,總阻抗為19.6 Ω/cm2。
With a framework of alternating layers between perovskite and rock-salt structure, Ruddlesden-Popper (RP) oxides, La(n+1)NinO3n+1+δ (n = 1,2 and 3, LNO) accommodate a range of hyper stoichiometry (i.e., denoted as δ) to be considered as a potential candidate of cathodes used in the solid oxide fuel cells (SOFC) operated at lower-temperature. In the present work, combustion process was investigated to prepare the precursors of Lan+1Nin(1-x)ConxO3n+1+δ (n =1, 2, 3) via mixing glycine with the a solution of La, Ni and Co nitrates with specific concentration. The precursors resulted from combustion were calcinated to powders. Examination through scanning electron microscope (SEM), the powders depicted a porous morphology and they belonged to mixed crystals of perovskite and rock-salt resultant from by x-ray diffractometer (XRD). Both crystal structure and surface morphology of the powders change and were determined by the pH values of the nitrate solutions in the process of their mixing with glycine. The XRD of the Co-doped La4Ni3O10+δ (LNO3) displayed a small shift of character peaks to higher angle. This fact implied a lattice contraction with Co-doping. Thermal gravimetric analysis (TGA) concluded that powder LNO2 containing the highest concentration of oxygen vacancies (i.e., △δ = -0.114). The powders were then formulated into pastes, which were screen-printed on a piece of home-made electrolyte of proton-transferred solid oxide fuel cell (P-SOFC) supported with NiO-anode. After drying, the single cell was subject to electrochemical tests. The electrochemical behavior of the cathodes made of different powders various in n-values were compared to find out the best RP structure of Lan+1Nin(1-x)ConxO3n+1+δ (n =1, 2, 3). The measurement of electrical conductivity by means of four-point probe indicated the cathode made of La4Ni2.1Co0.9O10+δ (LNO3Co0.2) powder depicted the highest conductivity (i.e., 140.5 S / cm) in air at 400℃. The measurements of Power density by means of polarization curve indicated the cell the highest power density (i.e., 14.4 mW/cm2) at 700 ℃. The measurements of Polarization resistance and Ohmic resistance by means of Eelectrochemical impedence spectrum (EIS) analysis indicated the ohmic resistance of cell (i.e., 17.6 Ω/cm2) and polarization resistance of cell (i.e., 2.04Ω/cm2) at 700 ℃.
[1] J. Hou, Z. Zhu, J. Qian and W. Liu, J. Power Sources, 264, 67–75., 2014.
[2] L. Bi, S. Boulfrad and E. Traversa, Chem. Soc. Rev, 43, 8255–8270., 2014.
[3] Z. Wang, M. Liu, W. Sun, D. Ding, Z. L¨u and M. Liu,Electrochem. Commun., 27, 19–21, 2013.
[4] L. Bi and E. Traversa, J. Mater. Res., 29, 1–15, 2013.
[5] J. Mizusaki, Y. Mima, S. Yamauchi, K. Fueki, H. Tagawa, Solid State Chem. 80, 102, 1989.
[6] B. Lin, H. Ding, Y. Dong, S. Wang, X. Zhang, D. Fang, and G. Meng, Journal of Power Sources, 186(1), 58 2009.
[7] S. Fourcade, A. Largeteau, F. Mauvy, J. Grenier, and M. Marrony. Electrochim Acta 55 (20), 5847–5853, 2010.
[8] 黃鎮江,燃料電池,修訂版,全華科技圖書股份有限公司, 420-506, 2004
[9] J.-M. Bassat, P. Dordor, F. Mauvy, J.-C. Grenier, and P. Stevens., Solid State Ionics 176 (37–38), 2717–2725, 2005.
[10] N.Q. Minh, Solid State Ionics, 174, 271–277, 2004.
[11] L.-D. Fan, P.-C. Su, Journal of Power Sources 306, 369-377, 2016.
[12] C. Li, K.C.K. Soh, P. Wu, Journal of Alloys and Compounds 372, 40–48, 2004.
[13] T. Ishihara, Fuel Cells and Hydrogen Energy, ISBN: 978-0-387-77707-8, 2009.
[14] S.N Ruddlesden ; P , Popper. "New compounds of the K2NiF4 type". Acta Crystallogr. 10: 538–539, 1957.
[15] H. Arai, T. Yamada, K. Eguchi, T. Seiyama, Applied Catalysis, 26, 265-276, 1986.
[16] S. B. Adler, Chem. Rev, 104, 4791-4843, 2004.
[17] U. Schubert, N. Husing, second, revised and updated edition, ISBN: 978-3-527-31037-1, 2004.
[18] C. T. Wu, National Cheng Kung University, 2003.
[19] D. H. Huang,, National Taiwan Normal University, 2004.
[20] C. H. Wu, National Taipei University of Technology, 2006.
[21] W. Zhou, Z. Shao, R. Ran, H. Gu, W. Jin, and N. Xu, The American Ceramic Society, 91, 1155-1162, 2008.
[22] EG & G Technical Services Inc., Fuel Cell Handbook 7th Eds, U.S. , Department of Energy, 2004
[23] S. M. Haile, Acta Materialia, 51, 5981, 2003
[24] R. O. Hayre, S. W. Cha, W. Colella, F. B. Prinz, Wiley, ISBN: 978-0-470-25843-9, 2008.
[25] E. Povoden-Karadeniz, Swiss Federal Institute Of Technology Zurich, degree of doctor, 2008.
[26] N. Y. Hsu, S. C. Yen, K. T. Jeng, C. C. Chien, Journal Power Sources, 161, 232, 2006.
[27] Z. Shao, W. Zhou, Z. Zhu, Progress in Materials Science, 57, 804, 2012.
[28] Q. A. Huanga, R. Hui, B. Wang, J. Zhang,” A review of AC impedance modeling and validation in SOFC diagnosis” Electrochimica Acta, 52, 8144-8164, 2007 [28] S.J. Skinner, J.A. Kilner, Solid State Ionics 135, 709–712, 2000.
[29] E.N. Naumovich, M.V. Patrakeeva, V.V. Kharton, A.A. Yaremchenko, D.I. Logvinovich , F.M.B. Marques, Solid State Sciences 7, 1353–1362, 2005.
[30] K.T. Lee, A. Manthiram, Solid State Ionics 178, 995–1000, 2007.
[31] L.A. Chick, L.R. Pederson, G.D. Maupin, J.L. Bates, L.E. Thomas, G.J. Exarhos, Materials Letters,10(1–2):6–12, 1990.
[32] T. Peng, X. Liu, K. Dai, J.R.Xiao, H. Song,Materials Research Bulletin 41, 1638–1645, 2006.
[33] C. C. Hwang, T.Y. Wu, J. Wan, J.S. Tsai, Materials Science and Engineering, B 111, 49–56, 2004.
[34] B. Liu, Y. Zhang, Journal of Alloys and Compounds, 453, 418–422, 2008.
[35] E. Thomas, S. H. Ehrman and H. J. Hwang, Proceedings Power MEMS, 471-474, 2009
[36] C.M. Chanquı´a, J.E. Vega-Castillo, A.L. Soldati, H. Troiani, A. Caneiro, J Nanopart Res, 14:1104, 2012.
[37] T.W. Chiu, B.S. Yu, Y.R. Wang, K.T. Chen, Y.T. Lin, Journal of Alloys and Compounds 509, 2933–2935, 2011.
[38] P. Sawant, S. Varma, B.N. Wani, S.R. Bharadwaj, international journal of hydrogen energy 373, 848-3858, 2012.
[39] L. Zhao1, B. He1, Q. Nian1, Z. Xun1, R. Peng, G. Meng, X. Liu, Journal of Power Sources 194, 291–294, 2009.
[40] G. Amow, I.J. Davidson, S.J. Skinner, Solid State Ionics 177, 1205–1210, 2006.
[41] T. Klande, S. Cusenza, P. Gaczyński, K.-D. Becker, L. Dörrerc,G.Borchardt, A. Feldhoff, Solid State Ionics 222–223 8–15, 2012.
[42] S. Hajarpour, Kh.Gheisari, A.Honarbakhsh Raouf, Journal of Magnetismand Magnetic Materials 329, 165–169, 2013.