| 研究生: |
方義傑 Yi-Jie Fang |
|---|---|
| 論文名稱: |
復發事件存活時間分析-丙型干擾素對慢性肉芽病患復發療效之案例研究 Survival analysis for recurrent event data -a case study on the treatment effects on gamma interferon to the CGD patients'' recurrence |
| 指導教授: |
曾議寬
Yi-kuan Tseng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 統計研究所 Graduate Institute of Statistics |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 復發事件 、邊際模型 、脆弱模型 、慢性肉芽腫病 |
| 外文關鍵詞: | CGD, frailty model, marginal model, repeated events |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
慢性肉芽腫是一個罕見的免疫系統遺傳性疾病,但死亡率也高達2%至5%,1989年經實驗證實丙型干擾素能有效降低慢性肉芽腫病患情況,衛生署也在1999年2月將丙型干擾素列為慢性肉芽腫患者的治療藥物。而我們感興趣的是丙型干擾素對於慢性肉芽腫病患復發事件的療效,本篇使用國際肉芽腫組織128個慢性肉芽腫病患的資料,焦點放在多維事件存活時間的三種邊際模型(marginal model:AG、PWP、WLW)與脆弱模型(frailty model)的比較,並探討使用丙型干擾素療程,對於慢性肉芽腫病患復發的次數以及時間的影響。
Chronic Granulomatous Disease (CGD) is a rare inherited disorders of the immune function,but the annual death rate also reaches as high as 2% to 5%. It has been confirmed that the gamma interferon (IFN-r) can reduce the frequency and severity of infections in CGD disease effectively after experiment in 1989. The department of Health in Taiwan has listed gamma interferon as the chronic granuloma patient’s treatment medicine in 1999 February. We are interested in the treatment effects of gamma interferon to the 128 CGD patients’recurrence. To investigate this research problem, we focus on three marginal models (AG model, WLW model and PWP model) and frailty models approaches of multivariate survival data analysis. In addition to compare the performance of the these approaches, we also study the effect of gamma interferon to CGD patients’recurrence and survival times under different models.
[1] Aalen, O. O. (1994). Effects of frailty in survival analysis. Stat. Methods Med. Res.,3, 227–2430.
[2] Andersen, P. K. and Gill, R. D. (1982). Cox’s regression model for counting processes:A large sample study. Annals of Statistics, 10, 1100–1120.
[3] Box-Steffensmeier, J. M. and Boef., S. D. (2006). Repeated events survival models:The conditional frailty model. Statistics in Medicine, 25(20), 3518–3533.
[4] Clayton, D. G. (1978). A model for association in bivariate life tables and its application in epidemiological studies of chronic disease incidence. Biometrika, 65, 141–151.
[5] Clayton, D. G. and Cuzick, J. (1985). Multivariate generalisations of the proportional hazards model. Journal of the Royal Statistical Society, A–148, 82–117.
[6] Clegg, L. X., Cai, J., and Sen, P. K. (1999). A marginal mixed baseline hazards model for multivariate failure time data. Biometrics, 55, 805–812.
[7] Cook, R. J. and Lawless, J. F. (2002). Analysis of repeated events. Statistical Methods in Medical Research, 11, 141–166.
[8] Cox, D. R. (1972). Regression models and life-tables (with discussion). Journal of the Royal Statistical Society, B–34, 187–200. 41
[9] Crowder, M. (1985). A multivariate distribution with weibull connections. Journal of the Royal Statistical Society, B–51, 93–107.
[10] Fleming, T. R. and Harrington, D. P. (1991). Counting processes and survival analysis. Wiley, New York.
[11] Gillick, M. (2001). Pinning down frailty. J. Gerontol. Ser. A-Biol. Sci. Med. Sci., 56, M134–M135.
[12] Guo, G. and Rodriguez, G. (1992). Estimating a multivariate proportional hazards model for clustered data using the em algorithm. with an application to child survival in guatemala. Journal of American Statistical Association, 87, 969–976.
[13] Hougaard, P. (1986a). Survival moels for heterogeneous populations derived frim stable distributions. Biometrics, 73, 671–678.
[14] Hougaard, P. (1986b). A class of multivariate failure time distributions. Biometrics, 73, 387–396.
[15] Huber, P. J. (1967). The behaviour of maximum ikelihood estimates under nonstandard conditions. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1, 221–233.
[16] Huster, J. H., Brookmeyer, R., and Self, S. G. (1989). Modelling paired survival data with covariates. Biometrics, 45, 145–156.
[17] Kaplan, E. L. and Meier, P. (1958). Non-parameteric estimation from incomplete observtion. Journal of American Statistical Association, 53, 457–481,562–563.
[18] Kelly, P. J. and Lim, L. L. (2000). Survival analysis for recurrent event data: an application to childhood infectious diseases. Statistics in Medicine, 19, 13–33. 42
[19] Klein, J. P. (1992). Semiparametirc estimation of random e?ects using the cox model based on the em algorithm. Biometrics, 48, 798–806.
[20] Lawless, J. F. and Nadeau, C. (1995). Some simple robust methods for the analysis of recurrent events. Technometrics, 37, 158–168.
[21] Lee, E. W., Wei, L. J., and Amato, D. A. (1992). Cox-type regression analysis for large numbers of small groups of correlated failure time observations. In Klein, J. P. and Goel, P. K. (eds), Survival Analysis: State of the Art. Kluwer: Dordrecht , pp. 237–247.
[22] Liang, K. Y., Self, S. G., Bandeen-Roche, K. J., and Zeger, S. L. (1995). Some recent developments for regression analysis of multivariate failure time data. Lifetime Data Analysis, 1, 403–415.
[23] Lin, D. Y. (1994). Cox regression analysis of multivariate failure time data: the marginal approach. Statistics in Medicine, 13, 2233–2247.
[24] Lin, D. Y. and Wei, L. J. (1989). The robust inference for the cox proportional hazard model. Journal of the American Statistical Association, 84, 1074–1078.
[25] Lin, D. Y., Wei, L. J., Yang, I., and Ying, Z. (2000). Semiparametric regression for the mean and rate functions of recurrent events. Journal of the Royal Statistical Society, B–62, 711–730.
[26] MaGilchrist, C. A. and Aisbtt, C. W. (1991). Regression with frailty in survival analysis. Biometrics, 47, 461–466. 43
[27] Nielsen, G. G., Gill, R. D., Andersen, R. K., and S⊘rensen, T. I. A. (1992). A counting process approach to maximum likelihood estimation in frailty models. Scandinavian Journal of Statistics, 19, 25–43.
[28] Oakes, D. (1992). Frailty models for multiple event times. Survival analysis: state of the art , pp. 371–379.
[29] Pepe, M. S. and Cai, J. (1993). Some graphical displays and marginal regression analyses for recurrent failure times and time-dependent covariates. Journal of American Statistical Association, 88, 811–820.
[30] Prentice, P. L., Williams, B. J., and Peterson, A. V. (1981). On the regression analysis of multivariate failure time data. Biometrika, 68, 373–379.
[31] Schaubel, D. E. and Cai, J. (2005). Analysis of clustered recurrent event data with application to hospitalization rates among renal failure patients. Biostatistics, 6, 404–419.
[32] Spiekerman, C. F. and Lin, D. Y. (1998). Marginal regression models for multivariate failure time data. Journal of American Statistical Association, 93, 1164–1175.
[33] Therneau, T. M. and Grambsch, P. M. (2000). Modeling survival data:extending the Cox Model . Springer.
[34] Vaupel, J. W., Manton, K. G., and Stallard, E. (1979). The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography, 16, 439–454.
[35] Wei, L. J., Lin, D. Y., and Weissfeld, L. (1989). Regression analysis of multivariate incomplete failure time data by modeling marginal distributions. Journal of American Statistical ssociation, 84, 1065–1073. 44
[36] Yashin, A. I., Vaupel, J. W., and Iachine, I. A. (1995). Correlated individual frailty: An advantageous approach to survival analysis of bivariate data. Mathematical Population Studies, 5(2), 145–159. 45