跳到主要內容

簡易檢索 / 詳目顯示

研究生: 鄭仁華
Ren-Hua Jheng
論文名稱: 藉由點擊化學製備穀胱甘肽控制藥物釋放之胜肽微脂體
Using Click Conjugation to Generate Glutathione Responsive Peptidyl Liposome
指導教授: 謝發坤
Fa-Kuen Shieh
李賢明
Hsien-Ming Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 115
中文關鍵詞: 穀胱甘肽膜活性多肽引信釋放以穀胱甘肽為引信響應的多肽微脂體
外文關鍵詞: glutathione, membrane active peptide, triggered release, GSH-responsive peptidyl liposome
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 穀胱甘肽是生物體內一種相當重要的小分子硫醇,其能扮演抗氧化劑來調節細胞的氧化還原壓力之外,同時也參與多項的生理代謝反應。再者,由於大部分腫瘤組織中穀胱甘肽的濃度皆為正常組織的數倍,此濃度的差異對於治療癌症的奈米載體而言,被視為一個良好的引信訊號來促使藥物釋放。過去有許多以穀胱甘肽為引信的微脂體藥物陸續被開發,其中大多數的研究皆以利用具有還原應答能力的非天然性磷脂質來作為微脂體的主要脂質組成,但此種磷脂質可能造成生物相容性上的相關疑慮。在本研究中,我們利用自然界的膜活性胜肽為基礎,成功開發了以穀胱甘肽為引信的破膜胜肽,並且此狀態下的破膜活性會被胜肽序列上的遮蔽區塊抑制。由於此多肽有硫醇敏感設計,與傳統多肽與微脂體的硫醇與丁二醯亞胺反應不相容,因此需開發新的多肽與微脂體共軛聯結方式。透過張力促使的疊氮-炔烴的環加成反應,我們成功地將此胜肽修飾於微脂體的表面上,也成功地促使引信穀胱甘肽可以控制微脂體的藥物釋放。從多肽的還原測試實驗中,可以發現此引信響應的胜肽可對於穀胱甘肽具有引信響應的能力,並同時轉變成具有高破膜活性的多肽型式。在藥物釋放方面,引信響應的多肽微脂體與腫瘤濃度下的穀胱甘肽作用後,其會造成較高比例藥物阿黴素的釋放。最後,我們藉由分析胜肽的圓二色光譜,發現此胜肽在與引信作用後,會造成胜肽兩親媒性二級結構上的增加,進而影響微脂體的藥物釋放。


    Reduced glutathione (GSH) is an important low-molecular-weight physiological thiol that can be serve as antioxidant for balancing the redox environment of cells and adjusts many significant biological metabolisms. Because of the concentration of glutathione in cancerous tissue is higher than normal level, it can be used as a good triggering signal for nanocarrier to release drug. As a result, a lot of liposomal drugs that can be triggered release by glutathione have been developed in the past decade. However, most liposomes mentioned above are composed of thiol-responsive “unnatural” phospholipids, which have potential safety issue. In this study, we intend to develop a GSH-responsive peptidyl liposome which is more biocompatible. The designed thio-responsive peptide is not compatible with conventional thiol-maleimide chemistry to conjugate onto liposome, and new cross-linking chemistry is needed. We successfully developed peptide-to-liposome conjugation by strain-promote azide-alkyne cycloaddition. We also successfully induce the reductive cleavage of the GSH-responsive peptide on liposome and trigger liposome release. Finally, through the circular dichroism analysis, we discovered the correlation between amphiphilic helicity of liposomal peptide and liposome release.

    中文摘要 i ABSTRACT ii 誌謝 iii 目錄 iv 圖目錄 vii 表目錄 xi 符號說明 xii 一、 緒論(INTRODUCTION) 1 1-1 前言 1 1-2 微脂體 1 1-3 微脂體藥物的包覆與釋放 3 1-4 穀胱甘肽 6 1-5 以穀胱甘肽為引信響應的反應8 1-6 膜活性胜肽 12 1-7 胜肽微脂體的合成方法 15 1-8 實驗動機與目的 16 二、 實驗部分 (EXPERIMENTAL SECTION) 17 2-1 微脂體合成、定性與定量 17 2-1-1微脂體磷脂質濃度的定量 18 2-1-2藥物包覆率 19 2-1-3動態光散射分析 20 2-2 胜肽合成、定性與定量 20 2-2-1胜肽合成 20 2-2-2高效能液相層析法及質譜法 23 2-2-3胺基酸定量分析 24 2-2-4引信響應胜肽的還原反應測試26 2-2-5圓二色光譜 26 2-3 胜肽微脂體合成、定性與定量 27 2-3-1後嵌入法 27 2-3-2胜肽與微脂體交聯反應-CuAAC28 2-3-3胜肽與微脂體交聯反應-SPAAC29 2-4 胜肽微脂體藥物釋放分析 30 2-4-1藥物引信釋放區間 30 2-4-2胜肽微脂體試管內藥物釋放 30 三、 實驗結果與討論 (RESULT and DISCUSSION) 33 3-1 引信響應膜活性胜肽的設計及合成 33 3-2 胜肽的定性及定量 39 3-3 穀胱甘肽對引信響應胜肽的還原反應測試 41 3-4 胜肽微脂體製備方式的最佳化 45 3-4-1後嵌入法修飾藥物微脂體 46 3-4-2銅催化的疊氮-炔烴環加成反應 48 3-4-3張力促進的疊氮-炔烴環加成反應 50 3-5 胜肽微脂體引信釋放區間的評估 52 3-6 以穀胱甘肽為引信控制多肽微脂體試管內的藥物釋放 56 3-6-1不同比例的DSPE-PEG2000對引信釋放的行為影響 56 3-6-2不同比例的錨定脂質對引信釋放的行為影響 59 3-6-3胜肽與微脂體交聯反應時間對引信釋放的行為影響 61 3-7 胜肽微脂體的定性 65 3-8 膜活性多肽之二級結構與多肽微脂體藥物釋放關係的探討 67 四、 結論 (CONCLUSION) 70 參考文獻 (REFERENCE) 71 附錄 (Supporting Information) 80 附錄一、 脂肽/疊氮化胜肽之合成轉換率分析 80 附錄二、Imidazole-1-sulfonyl Azide Hydrochloride之合成 84 附錄三、脂肽的還原反應測試實驗結果 84 附錄四、膜活性脂肽對於DOPC微脂體的嵌入效率分析 89 附錄五、胜肽/脂肽的HPLC圖譜與質譜圖 91

    [1] Bangham, A. D.; Horne, R. W., "Negative Staining of Phospholipids and Their
    Structural Modification by Surface-Active Agents as Observed in the Electron
    Microscope." J Mol Biol, 8, 1964, 660-8.
    [2] Bangham, A. D.; Standish, M. M.; Weissmann, G., "The action of steroids and
    streptolysin S on the permeability of phospholipid structures to cations." J Mol
    Biol, 13 (1), 1965, 253-9.
    [3] Sessa, G.; Weissmann, G., "Incorporation of Lysozyme into Liposomes - a Model
    for Structure-Linked Latency." J Biol Chem, 245 (13), 1970, 3295-3301.
    [4] Lasic, D. D., "Novel applications of liposomes." Trends Biotechnol, 16 (7), 1998,
    307-21.
    [5] Johnson, S. M., "The effect of charge and cholesterol on the size and thickness of
    sonicated phospholipid vesicles." Biochim Biophys Acta, 307 (1), 1973, 27-41.
    [6] Juliano, R. L.; Stamp, D., "The effect of particle size and charge on the clearance
    rates of liposomes and liposome encapsulated drugs." Biochem Biophys Res
    Commun, 63 (3), 1975, 651-8.
    [7] Grull, H.; Langereis, S., "Hyperthermia-triggered drug delivery from temperature-
    sensitive liposomes using MRI-guided high intensity focused ultrasound." J
    Control Release, 161 (2), 2012, 317-327.
    [8] Monteiro, N.; Martins, A.; Reis, R. L.; Neves, N. M., "Liposomes in tissue
    engineering and regenerative medicine." J R Soc Interface, 11 (101), 2014,
    20140459.
    [9] Taylor, K. M. G.; Taylor, G.; Kellaway, I. W.; Stevens, J., "Drug Entrapment and
    Release from Multilamellar and Reverse-Phase Evaporation Liposomes." Int J
    Pharm, 58 (1), 1990, 49-55.
    [10] Briuglia, M. L.; Rotella, C.; McFarlane, A.; Lamprou, D. A., "Influence of
    cholesterol on liposome stability and on in vitro drug release." Drug Deliv Transl
    Res, 5 (3), 2015, 231-42.
    [11] Milla, P.; Dosio, F.; Cattel, L., "PEGylation of proteins and liposomes: a powerful
    and flexible strategy to improve the drug delivery." Curr Drug Metab, 13 (1), 2012,
    105-19.
    [12] Gregoriadis, G., "Drug entrapment in liposomes." FEBS Lett, 36 (3), 1973, 292-6.
    [13] Barenholz, Y., "Doxil (R) - The first FDA-approved nano-drug: Lessons learned." J
    Control Release, 160 (2), 2012, 117-134.
    [14] Matsumura, Y.; Maeda, H., "A New Concept for Macromolecular Therapeutics in
    Cancer-Chemotherapy - Mechanism of Tumoritropic Accumulation of Proteins and
    the Antitumor Agent Smancs." Cancer Res, 46 (12), 1986, 6387-6392.
    [15] Fang, J.; Nakamura, H.; Maeda, H., "The EPR effect: Unique features of tumor
    blood vessels for drug delivery, factors involved, and limitations and augmentation
    of the effect." Adv Drug Deliver Rev, 63 (3), 2011, 136-151.
    [16] Torchilin, V., "Tumor delivery of macromolecular drugs based on the EPR effect."
    Adv Drug Deliver Rev, 63 (3), 2011, 131-135.
    [17] Gregoriadis, G.; Wills, E. J.; Swain, C. P.; Tavill, A. S., "Drug-carrier potential of
    liposomes in cancer chemotherapy." Lancet, 1 (7870), 1974, 1313-6.
    [18] Patel, N. R.; Pattni, B. S.; Abouzeid, A. H.; Torchilin, V. P., "Nanopreparations to
    overcome multidrug resistance in cancer." Adv Drug Deliver Rev, 65 (13-14), 2013,
    1748-1762.
    [19] Franco, M. S.; Gomes, E. R.; Roque, M. C.; Oliveira, M. C., "Triggered Drug
    Release From Liposomes: Exploiting the Outer and Inner Tumor Environment."
    Front Oncol, 11, 2021, 623760.
    [20] Wang, Y. F.; Kohane, D. S., "External triggering and triggered targeting strategies
    for drug delivery." Nat Rev Mater, 2 (6), 2017, 1-14.
    [21] Mo, R.; Gu, Z., "Tumor microenvironment and intracellular signal-activated
    nanomaterials for anticancer drug delivery." Mater Today, 19 (5), 2016, 274-283.
    [22] Zhao, Y.; Ren, W.; Zhong, T.; Zhang, S.; Huang, D.; Guo, Y.; Yao, X.;
    Wang, C.; Zhang, W. Q.; Zhang, X.; Zhang, Q., "Tumor-specific pH-responsive
    peptide-modified pH-sensitive liposomes containing doxorubicin for enhancing
    glioma targeting and anti-tumor activity." J Control Release, 222, 2016, 56-66.
    [23] Zhang, S. Y.; Zhao, Y., "Controlled Release from Cleavable Polymerized Liposomes
    upon Redox and pH Stimulation." Bioconjugate Chem, 22 (4), 2011, 523-528.
    [24] Loew, M.; Forsythe, J. C.; McCarley, R. L., "Lipid Nature and Their Influence on
    Opening of Redox-Active Liposomes." Langmuir, 29 (22), 2013, 6615-6623.
    [25] Mizukami, S.; Kashibe, M.; Matsumoto, K.; Hori, Y.; Kikuchi, K., "Enzyme-
    triggered compound release using functionalized antimicrobial peptide derivatives."
    Chemical Science, 8 (4), 2017, 3047-3053.
    [26] Sarkar, N.; Banerjee, J.; Hanson, A. J.; Elegbede, A. I.; Rosendahl, T.;
    Krueger, A. B.; Banerjee, A. L.; Tobwala, S.; Wang, R. Y.; Lu, X. N.; Mallik,
    S.; Srivastava, D. K., "Matrix metalloproteinase-assisted triggered release of
    liposomal contents." Bioconjugate Chem, 19 (1), 2008, 57-64.
    [27] Pourhassan, H.; Clergeaud, G.; Hansen, A. E.; Ostrem, R. G.; Fliedner, F. P.; Melander, F.; Nielsen, O. L.; O'Sullivan, C. K.; Kjaer, A.; Andresen, T. L., "Revisiting the use of sPLA(2)-sensitive liposomes in cancer therapy." J Control Release, 261, 2017, 163-173.
    [28] Ong, W.; Yang, Y.; Cruciano, A. C.; McCarley, R. L., "Redox-triggered contents
    release from liposomes." J Am Chem Soc, 130 (44), 2008, 14739-44.
    [29] Van Laer, K.; Hamilton, C. J.; Messens, J., "Low-molecular-weight thiols in thiol-
    disulfide exchange." Antioxid Redox Signal, 18 (13), 2013, 1642-53.
    [30] Wu, G.; Fang, Y. Z.; Yang, S.; Lupton, J. R.; Turner, N. D., "Glutathione
    metabolism and its implications for health." J Nutr, 134 (3), 2004, 489-92.
    [31] Owen, J. B.; Butterfield, D. A., "Measurement of oxidized/reduced glutathione
    ratio." Methods Mol Biol, 648, 2010, 269-77.
    [32] Bounous, G.; Batist, G.; Gold, P., "Immunoenhancing property of dietary whey
    protein in mice: role of glutathione." Clin Invest Med, 12 (3), 1989, 154-61.
    [33] Droge, W.; Schulze-Osthoff, K.; Mihm, S.; Galter, D.; Schenk, H.; Eck, H. P.;
    Roth, S.; Gmunder, H., "Functions of glutathione and glutathione disulfide in
    immunology and immunopathology." FASEB J, 8 (14), 1994, 1131-8.
    [34] Delaunay-Moisan, A.; Ponsero, A.; Toledano, M. B., "Reexamining the Function
    of Glutathione in Oxidative Protein Folding and Secretion." Antioxid Redox Signal,
    27 (15), 2017, 1178-1199.
    [35] Deponte, M., "The Incomplete Glutathione Puzzle: Just Guessing at Numbers and
    Figures?" Antioxid Redox Signal, 27 (15), 2017, 1130-1161.
    [36] Ottaviano, F. G.; Handy, D. E.; Loscalzo, J., "Redox regulation in the extracellular
    environment." Circ J, 72 (1), 2008, 1-16.
    [37] Forman, H. J.; Zhang, H.; Rinna, A., "Glutathione: overview of its protective roles,
    measurement, and biosynthesis." Mol Aspects Med, 30 (1-2), 2009, 1-12.
    [38] Bachhawat, A. K.; Kaur, A., "Glutathione Degradation." Antioxid Redox Signal, 27
    (15), 2017, 1200-1216.
    [39] Franco, R.; Cidlowski, J. A., "Apoptosis and glutathione: beyond an antioxidant."
    Cell Death Differ, 16 (10), 2009, 1303-14.
    [40] Circu, M. L.; Aw, T. Y., "Glutathione and modulation of cell apoptosis." Biochim
    Biophys Acta, 1823 (10), 2012, 1767-77.
    [41] Townsend, D. M.; Tew, K. D.; Tapiero, H., "The importance of glutathione in
    human disease." Biomed Pharmacother, 57 (3-4), 2003, 145-55.
    [42] Sian, J.; Dexter, D. T.; Lees, A. J.; Daniel, S.; Agid, Y.; Javoy-Agid, F.;
    Jenner, P.; Marsden, C. D., "Alterations in glutathione levels in Parkinson's disease
    and other neurodegenerative disorders affecting basal ganglia." Ann Neurol, 36 (3),
    1994, 348-55.
    [43] Schulz, J. B.; Lindenau, J.; Seyfried, J.; Dichgans, J., "Glutathione, oxidative
    stress and neurodegeneration." Eur J Biochem, 267 (16), 2000, 4904-11.
    [44] Kameoka, M.; Okada, Y.; Tobiume, M.; Kimura, T.; Ikuta, K., "Intracellular
    glutathione as a possible direct blocker of HIV type 1 reverse transcription." Aids
    Res Hum Retrov, 12 (17), 1996, 1635-1638.
    [45] Kelly, F. J., "Gluthathione: in defence of the lung." Food Chem Toxicol, 37 (9-10),
    1999, 963-6.
    [46] Biswas, S. K.; Rahman, I., "Environmental toxicity, redox signaling and lung
    inflammation: the role of glutathione." Mol Aspects Med, 30 (1-2), 2009, 60-76.
    [47] Yuan, L.; Kaplowitz, N., "Glutathione in liver diseases and hepatotoxicity." Mol
    Aspects Med, 30 (1-2), 2009, 29-41.
    [48] Schafer, F. Q.; Buettner, G. R., "Redox environment of the cell as viewed through
    the redox state of the glutathione disulfide/glutathione couple." Free Radical Bio Med, 30 (11), 2001, 1191-1212.
    [49] Jones, D. P., "Redox potential of GSH/GSSG couple: assay and biological
    significance." Methods Enzymol, 348, 2002, 93-112.
    [50] Adams, J. D.; Wang, B.; Klaidman, L. K.; Lebel, C. P.; Odunze, I. N.; Shah,
    D., "New Aspects of Brain Oxidative Stress-Induced by Tert-Butylhydroperoxide."
    Free Radical Bio Med, 15 (2), 1993, 195-202.
    [51] Lovell, M. A.; Ehmann, W. D.; Butler, S. M.; Markesbery, W. R., "Elevated
    thiobarbituric acid-reactive substances and antioxidant enzyme activity in the brain
    in Alzheimer's disease." Neurology, 45 (8), 1995, 1594-601.
    [52] Sofic, E.; Lange, K. W.; Jellinger, K.; Riederer, P., "Reduced and oxidized
    glutathione in the substantia nigra of patients with Parkinson's disease." Neurosci
    Lett, 142 (2), 1992, 128-30.
    [53] Miller, V. M.; Lawrence, D. A.; Mondal, T. K.; Seegal, R. F., "Reduced
    glutathione is highly expressed in white matter and neurons in the unperturbed
    mouse brain--implications for oxidative stress associated with neurodegeneration."
    Brain Res, 1276, 2009, 22-30.
    [54] Lei, Y. L.; Huang, K.; Gao, C.; Lau, Q. C.; Pan, H.; Xie, K.; Li, J. Y.; Liu,
    R.; Zhang, T.; Xie, N.; Nai, H. S.; Wu, H.; Dong, Q.; Zhao, X.; Nice, E. C.;
    Huang, C. H.; Wei, Y. Q., "Proteomics Identification of ITGB3 as a Key Regulator
    in Reactive Oxygen Species-induced Migration and Invasion of Colorectal Cancer
    Cells." Mol Cell Proteomics, 10 (10), 2011.
    [55] Patel, B. P.; Rawal, U. M.; Dave, T. K.; Rawal, R. M.; Shukla, S. N.; Shah, P.
    M.; Patel, P. S., "Lipid peroxidation, total antioxidant status, and total thiol levels
    predict overall survival in patients with oral squamous cell carcinoma." Integr
    Cancer Ther, 6 (4), 2007, 365-372.
    [56] Chaiswing, L.; Oberley, T. D., "Extracellular/microenvironmental redox state."
    Antioxid Redox Signal, 13 (4), 2010, 449-65.
    [57] Kuppusamy, P.; Li, H.; Ilangovan, G.; Cardounel, A. J.; Zweier, J. L.;
    Yamada, K.; Krishna, M. C.; Mitchell, J. B., "Noninvasive imaging of tumor redox
    status and its modification by tissue glutathione levels." Cancer Res, 62 (1), 2002,
    307-12.
    [58] Perry, R. R.; Mazetta, J. A.; Levin, M.; Barranco, S. C., "Glutathione levels and
    variability in breast tumors and normal tissue." Cancer, 72 (3), 1993, 783-7.
    [59] Russo, A.; DeGraff, W.; Friedman, N.; Mitchell, J. B., "Selective modulation of
    glutathione levels in human normal versus tumor cells and subsequent differential
    response to chemotherapy drugs." Cancer Res, 46 (6), 1986, 2845-8.
    [60] Wu, C.; Gong, M. Q.; Liu, B. Y.; Zhuo, R. X.; Cheng, S. X., "Co-delivery of
    multiple drug resistance inhibitors by polymer/inorganic hybrid nanoparticles to
    effectively reverse cancer drug resistance." Colloid Surface B, 149, 2017, 250-259.
    [61] Gamcsik, M. P.; Kasibhatla, M. S.; Teeter, S. D.; Colvin, O. M., "Glutathione
    levels in human tumors." Biomarkers, 17 (8), 2012, 671-91.
    [62] He, Q.; Chen, J.; Yan, J.; Cai, S.; Xiong, H.; Liu, Y.; Peng, D.; Mo, M.; Liu,
    Z., "Tumor microenvironment responsive drug delivery systems." Asian J Pharm
    Sci, 15 (4), 2020, 416-448.
    [63] Guo, X. S.; Cheng, Y.; Zhao, X. T.; Luo, Y. L.; Chen, J. J.; Yuan, W. E.,
    "Advances in redox-responsive drug delivery systems of tumor microenvironment."
    J Nanobiotechnol, 16, 2018.
    [64] Mollazadeh, S.; Mackiewicz, M.; Yazdimamaghani, M., "Recent advances in the
    redox-responsive drug delivery nanoplatforms: A chemical structure and physical
    property perspective." Mat Sci Eng C-Mater, 118, 2021, 11536.
    [65] Wang, Z.; Ling, L. B.; Du, Y. W.; Yao, C.; Li, X. S., "Reduction responsive
    liposomes based on paclitaxel-ss-lysophospholipid with high drug loading for
    intracellular delivery." Int J Pharm, 564, 2019, 244-255.
    [66] Chen, Y. F.; Hsu, M. W.; Su, Y. C.; Chang, H. M.; Chang, C. H.; Jan, J. S.,
    "Naturally derived DNA nanogels as pH- and glutathione-triggered anticancer drug
    carriers." Mat Sci Eng C-Mater, 114, 2020, 111025.
    [67] Du, X.; Kleitz, F.; Li, X. Y.; Huang, H. W.; Zhang, X. J.; Qiao, S. Z.,
    "Disulfide-Bridged Organosilica Frameworks: Designed, Synthesis, Redox-
    Triggered Biodegradation, and Nanobiomedical Applications." Adv Funct Mater, 28
    (26), 2018, 1707325.
    [68] Cheng, Y.; Ji, Y. H., "Mitochondria-targeting nanomedicine self-assembled from
    GSH-responsive paclitaxel-ss-berberine conjugate for synergetic cancer treatment
    with enhanced cytotoxicity." J Control Release, 318, 2020, 38-49.
    [69] Du, Y. W.; He, W.; Zhou, W. Y.; Li, X. S., "Disulfide phosphatidylcholines:
    alternative phospholipids for the preparation of functional liposomes." Chem
    Commun, 55 (58), 2019, 8434-8437.
    [70] Nie, Y. Y.; Xu, Y. R.; Gao, Y.; He, J. L.; Sun, L.; Chen, J. M.; Cui, Y. S.; Ge,
    H. X.; Ning, X. H., "A glutathione-triggered precision explosive system for
    improving tumor chemosensitivity." Nano Res, 2020.
    [71] Liu, D. C.; Chen, B. L.; Mo, Y. L.; Wang, Z. H.; Qi, T.; Zhang, Q.; Wang, Y.
    G., "Redox-Activated Porphyrin-Based Liposome Remote-Loaded with
    Indoleamine 2,3-Dioxygenase (IDO) Inhibitor for Synergistic Photoimmunotherapy
    through Induction of Immunogenic Cell Death and Blockage of IDO Pathway (vol
    19, pg 6964, 2019)." Nano Lett, 20 (2), 2020, 1476-1476.
    [72] Elzes, M. R.; Akeroyd, N.; Engbersen, J. F. J.; Paulusse, J. M. J., "Disulfide-
    functional poly(amido amine)s with tunable degradability for gene delivery." J
    Control Release, 244, 2016, 357-365.
    [73] Li, S. L.; Saw, P. E.; Lin, C. H.; Nie, Y.; Tao, W.; Farokhzad, O. C.; Zhang,
    L.; Xu, X. D., "Redox-responsive polyprodrug nanoparticles for targeted siRNA
    delivery and synergistic liver cancer therapy." Biomaterials, 234, 2020, 119760.
    [74] Wang, B.; Zhang, J.; Liu, Y. H.; Zhang, W.; Xiao, Y. P.; Zhao, R. M.; Yu, X.
    Q., "A reduction-responsive liposomal nanocarrier with self-reporting ability for
    efficient gene delivery." J Mater Chem B, 6 (18), 2018, 2860-2868.
    [75] Lv, H. Y.; Ma, S.; Wang, Z. B.; Ji, X. T.; Lv, S. P.; Ding, C. F., "Glutathione-
    triggered non-template synthesized porous carbon nanospheres serve as low toxicity
    targeted delivery system for cancer multi-therapy." Chinese Chem Lett, 32 (5), 2021,
    1765-1769.
    [76] Baldwin, A. D.; Kiick, K. L., "Reversible maleimide-thiol adducts yield glutathione-
    sensitive poly(ethylene glycol)-heparin hydrogels." Polym Chem-Uk, 4 (1), 2013,
    133-143.
    [77] Cheng, G.; He, Y. Y.; Xie, L.; Nie, Y.; He, B.; Zhang, Z. R.; Gu, Z. W.,
    "Development of a reduction-sensitive diselenide-conjugated oligoethylenimine
    nanoparticulate system as a gene carrier." Int J Nanomed, 7, 2012, 3991-4006.
    [78] Liang, Y. K.; Kiick, K. L., "Liposome-Cross-Linked Hybrid Hydrogels for
    Glutathione-Triggered Delivery of Multiple Cargo Molecules." Biomacromolecules,
    17 (2), 2016, 601-614.
    [79] Zhai, S.; Hu, X.; Hu, Y.; Wu, B.; Xing, D., "Visible light-induced crosslinking
    and physiological stabilization of diselenide-rich nanoparticles for redox-responsive
    drug release and combination chemotherapy." Biomaterials, 121, 2017, 41-54.
    [80] Galdiero, S.; Falanga, A.; Cantisani, M.; Vitiello, M.; Morelli, G.; Galdiero,
    M., "Peptide-lipid interactions: experiments and applications." Int J Mol Sci, 14 (9),
    2013, 18758-89.
    [81] Jiang, Y. J.; Chen, Y. Y.; Song, Z. Y.; Tan, Z. Z.; Cheng, J. J., "Recent advances
    in design of antimicrobial peptides and polypeptides toward clinical translation."
    Adv Drug Deliver Rev, 170, 2021, 261-280.
    [82] McMillan, K. A. M.; Coombs, M. R. P., "Review: Examining the Natural Role of
    Amphibian Antimicrobial Peptide Magainin." Molecules, 25 (22), 2020, 5436.
    [83] Li, Q. Q.; Chen, P. G.; Hu, Z. W.; Cao, Y.; Chen, L. X.; Chen, Y. X.; Zhao,
    Y. F.; Li, Y. M., "Selective inhibition of cancer cells by enzyme-induced gain of
    function of phosphorylated melittin analogues." Chem Sci, 8 (11), 2017, 7675-7681.
    [84] Jiang, Z. Q.; Vasil, A. I.; Hale, J. D.; Hancock, R. E. W.; Vasil, M. L.; Hodges, R. S., "Effects of net charge and the number of positively charged residues on the biological activity of amphipathic alpha-helical cationic antimicrobial peptides." Biopolymers, 90 (3), 2008, 369-383.
    [85] Li, M. Y.; Wang, S. J.; Xu, J.; Xu, S. H.; Liu, H. L., "pH/Redox-Controlled
    Interaction between Lipid Membranes and Peptide Derivatives with a "Helmet"." J
    Phys Chem B, 123 (31), 2019, 6784-6791.
    [86] Mizukami, S.; Hosoda, M.; Satake, T.; Okada, S.; Hori, Y.; Furuta, T.;
    Kikuchi, K., "Photocontrolled Compound Release System Using Caged
    Antimicrobial Peptide." Journal of the American Chemical Society, 132 (28), 2010,
    9524-9525.
    [87] Mizukami, S.; Kashibe, M.; Matsumoto, K.; Hori, Y.; Kikuchi, K., "Enzyme-
    triggered compound release using functionalized antimicrobial peptide derivatives
    (vol 8, pg 3047, 2017)." Chemical Science, 8 (4), 2017, 3276-3276.
    [88] Huang, J. R.; Lee, M. H.; Li, W. S.; Wu, H. C., "Liposomal Irinotecan for
    Treatment of Colorectal Cancer in a Preclinical Model." Cancers, 11 (3), 2019.
    [89] Yang, J.; Bahreman, A.; Daudey, G.; Bussmann, J.; Olsthoorn, R. C. L.; Kros,
    A., "Drug Delivery via Cell Membrane Fusion Using Lipopeptide Modified
    Liposomes." Acs Central Sci, 2 (9), 2016, 621-630.
    [90] Zalipsky, S.; Mullah, N.; Harding, J. A.; Gittelman, J.; Guo, L.; DeFrees, S. A.,
    "Poly(ethylene glycol)-grafted liposomes with oligopeptide or oligosaccharide
    ligands appended to the termini of the polymer chains." Bioconjugate Chem, 8 (2),
    1997, 111-118.
    [91] Versluis, F.; Voskuhl, J.; van Kolck, B.; Zope, H.; Bremmer, M.; Albregtse,
    T.; Kros, A., "In Situ Modification of Plain Liposomes with Lipidated Coiled Coil
    Forming Peptides Induces Membrane Fusion." Journal of the American Chemical
    Society, 135 (21), 2013, 8057-8062.
    [92] Marques-Gallego, P.; de Kroon, A. I. P. M., "Ligation Strategies for Targeting
    Liposomal Nanocarriers." Biomed Res Int, 2014, 2014, 1-12.
    [93] Lim, S. K.; Sanden, C.; Selegard, R.; Liedberg, B.; Aili, D., "Tuning Liposome
    Membrane Permeability by Competitive Peptide Dimerization and Partitioning-
    Folding Interactions Regulated by Proteolytic Activity." Sci Rep-Uk, 6, 2016.
    [94] Cavalli, S.; Overhand, M.; Kros, A., "Assembly into beta-Sheet Structures upon
    Peptide-Liposome Conjugation through Copper(I)-Catalyzed [3+2] Azide-Alkyne
    Cycloaddition." Chempluschem, 79 (4), 2014, 564-568.
    [95] Ringhieri, P.; Mannucci, S.; Conti, G.; Nicolato, E.; Fracasso, G.; Marzola, P.;
    Morelli, G.; Accardo, A., "Liposomes derivatized with multimeric copies of
    KCCYSL peptide as targeting agents for HER-2-overexpressing tumor cells." Int J
    Nanomed, 12, 2017, 501-514.
    [96] Tarallo, R.; Accardo, A.; Falanga, A.; Guarnieri, D.; Vitiello, G.; Netti, P.;
    D'Errico, G.; Morelli, G.; Galdiero, S., "Clickable Functionalization of Liposomes
    with the gH625 Peptide from Herpes simplex Virus Type I for Intracellular Drug
    Delivery." Chem-Eur J, 17 (45), 2011, 12659-12668.
    [97] Bak, M.; Jolck, R. I.; Eliasen, R.; Andresen, T. L., "Affinity Induced Surface Functionalization of Liposomes Using Cu-Free Click Chemistry." Bioconjugate Chem, 27 (7), 2016, 1673-1680.
    [98] Bernhard, Y.; Gigot, E.; Goncalves, V.; Moreau, M.; Sok, N.; Richard, P.;
    Decreau, R. A., "Direct subphthalocyanine conjugation to bombesin vs. indirect
    conjugation to its lipidic nanocarrier." Org Biomol Chem, 14 (19), 2016, 4511-4518.
    [99] Blenke, E. O.; Klaasse, G.; Merten, H.; Pluckthun, A.; Mastrobattista, E.,
    "Liposome functionalization with copper-free "click chemistry"." J Control Release,
    202, 2015, 14-20.
    [100] Goto, C.; Hirano, M.; Hayashi, K.; Kikuchi, Y.; Hara-Kudo, Y.; Misawa,
    T.; Demizu, Y., "Development of Amphipathic Antimicrobial Peptide Foldamers
    Based on Magainin 2 Sequence." ChemMedChem, 14 (22), 2019, 1911-1916.
    [101] Dai, Y. X.; Yue, N.; Liu, C. X.; Cai, X. G.; Su, X.; Bi, X. Z.; Li, Q. F.;
    Li, C. Y.; Huang, W. L.; Qian, H., "Synthesis and evaluation of redox-sensitive
    gonadotropin-releasing hormone receptor-targeting peptide conjugates." Bioorg
    Chem, 88, 2019, 102945.
    [102] Klein, P. M.; Reinhard, S.; Lee, D. J.; Muller, K.; Ponader, D.;
    Hartmann, L.; Wagner, E., "Precise redox-sensitive cleavage sites for improved
    bioactivity of siRNA lipopolyplexes." Nanoscale, 8 (42), 2016, 18098-18104.
    [103] Goddard-Borger, E. D.; Stick, R. V., "An efficient, inexpensive, and shelf-stable
    diazotransfer reagent: imidazole-1-sulfonyl azide hydrochloride." Org Lett, 9 (19),
    2007, 3797-800.
    [104] Marine, J. E.; Liang, X.; Song, S.; Rudick, J. G., "Azide-rich peptides via an
    on-resin diazotransfer reaction." Biopolymers, 104 (4), 2015, 419-26.
    [105] Hansen, M. B.; van Gurp, T. H. M.; van Hest, J. C. M.; Lowik, D. W. P. M.,
    "Simple and Efficient Solid-Phase Preparation of Azido-peptides." Organic Letters,
    14 (9), 2012, 2330-2333.
    [106] Castro, V.; Banco-Canosa, J. B.; Rodriguez, H.; Albericio, F., "Imidazole-1-
    sulfonyl Azide-Based Diazo-Transfer Reaction for the Preparation of Azido Solid
    Supports for Solid-Phase Synthesis." Acs Comb Sci, 15 (7), 2013, 331-334.
    [107] Hassane, F. S.; Frisch, B.; Schuber, F., "Targeted liposomes: Convenient
    coupling of ligands to preformed vesicles using "click chemistry"." Bioconjugate
    Chem, 17 (3), 2006, 849-854.
    [108] Kumar, A.; Erasquin, U. J.; Qin, G. T.; Li, K.; Cai, C. Z., ""Clickable'',
    polymerized liposomes as a versatile and stable platform for rapid optimization of
    their peripheral compositions." Chem Commun, 46 (31), 2010, 5746-5748.
    [109] Smyth, T.; Petrova, K.; Payton, N. M.; Persaud, I.; Redzic, J. S.; Gruner,
    M. W.; Smith-Jones, P.; Anchordoquy, T. J., "Surface Functionalization of
    Exosomes Using Click Chemistry." Bioconjugate Chem, 25 (10), 2014, 1777-1784.
    [110] Bianchini, E.; Pietrobon, L.; Ronchin, L.; Tortato, C.; Vavasori, A.,
    "Trifluoroacetic acid promoted hydration of styrene catalyzed by sulfonic resins:
    Comparison of the reactivity of styrene, n-hexene and cyclohexene." Appl Catal a-
    Gen, 570, 2019, 130-138.

    QR CODE
    :::