跳到主要內容

簡易檢索 / 詳目顯示

研究生: 顏瑞成
Ruie-Cheng Yan
論文名稱: 氮化鎵基材電晶體製作與分析
GaN-based Transistors Fabrication And Study
指導教授: 辛裕明
Yue-ming Hsin
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 96
語文別: 中文
論文頁數: 81
中文關鍵詞: 離子佈植異質接面氮化鎵電晶體
外文關鍵詞: ion implantation, GaN, transistors, heterojunction
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究內容為氮化鎵基材電晶體(GaN-based Transistors)的製作與量測分析,研究內容分為兩個部分:(1) 平台式氮化鋁鎵/氮化鎵異質接面雙載子電晶體(Mesa-type AlGaN/GaN Heterojunction Bipolar Transistors) (2) 平面式氮化鎵雙載子接面電晶體(Planar-type GaN Bipolar Junction Transistors)。提出以有機金屬化學氣相磊晶系統(Metal-organic Chemical Vapor Deposition, MOCVD)成長於藍寶石(Sapphire)的基板,製作出氮化鎵基材電晶體,並針對元件進行直流量測、分析與討論。
    平台式氮化鋁鎵/氮化鎵異質接面雙載子電晶體量測部份主要以室溫直流量測,量測的射極面積為110×110 μm2,電晶體在VBE =0.9 V時的電流增益為4.3,崩潰電壓為3 V。另外,由於基極區p型氮化鎵有較低電洞濃度,導致有較差歐姆接觸特性及較大之電阻。為了避免基極區p型氮化鎵乾蝕刻所造成的表面損傷,因此利用離子佈植方式,將高能量矽(Si)離子直接植入晶體中,製造出平面式氮化鎵雙載子接面電晶體,並且探討雙載子接面電晶體的製造技術與元件分析。


    This project focused on fabrication of GaN-based transistors and its measurement, which are to be elaborated in two kinds── (1) Mesa-type AlGaN/GaN heterojunction bipolar transistors (HBT), and (2) Planar-type GaN bipolar junction transistors (BJT). The way to the ultimate target, GaN-based transistors, is to epitaxy GaN material on sapphire substrates through metal-organic chemical vapor deposition technology (MOCVD). Detailed analysis and discussion would be made later after the device underwent DC measurement.
    The measurement of the mesa-type AlGaN/GaN heterojunction bipolar transistors mainly takes the room temperature DC gauging, with 110×110 μm2 emitter area. The current gain of the transistor in Gummel plot is 4.3 with the VBE =0.9 V, the break-down voltage of which is 3 V. Moreover, the lower hole concentration of the base region p-type GaN leads to worse ohmic contact characteristic and a large resistance. Therefore, to avoid the damage caused by the dry etching on the base region p-type GaN, ion implanter is administered. Silicon (Si) ion implanted upon the sample with high energy recipe, bringing out planar-type GaN bipolar junction transistors, the characteristics of which will be discussed later and analyzed in detailed figures.

    摘要 I 目錄 IV 圖目錄 VII 表目錄 X 第一章 導論 1 1.1 研究動機 1 1.2 氮化鎵基材電晶體介紹 2 1.3 目前相關研究狀況與比較 3 1.4 研究摘要 5 第二章 P型氮化鎵金屬半導體接觸 6 2.1 簡介 6 2.2 金屬與半導體接觸原理 6 2.2.1 蕭基接觸 6 2.2.2 歐姆接觸 9 2.2.3 傳輸線模型原理 10 2.3 P型氮化鎵金屬半導體製作與量測 12 2.3.1 P型氮化鎵金屬半導體特性探討 12 2.3.2 製程流程 14 2.3.3 歐姆接觸改善 16 2.4 結論 19 第三章 氮化鋁鎵/氮化鎵異質接面雙載子電晶體 20 3.1 簡介 20 3.2 氮化鎵材料之特性 20 3.3 元件結構之特性 21 3.4 電晶體元件製作流程 22 3.5 電晶體特性量測與討論 29 3.6 結論 39 第四章 平面結構氮化鎵雙載子接面電晶體 40 4.1 簡介 40 4.2 離子佈植系統 40 4.3 元件結構之特性 43 4.4 電晶體元件製作流程 43 4.5 電晶體特性量測與討論 49 4.5.1 矽離子佈植於氮化鎵之霍爾量測 49 4.5.2 元件特性量測 52 4.6 結論 59 第五章 結論與未來工作 61 參考文獻 63

    [1] O. Ambacher et al., “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys. vol. 85, 3222, 1999.
    [2] M. A. Khan, J. N. Kuznia, A. R. Bhattarai, and D. T. Olson, “Metal semiconductor field effect transistor based on single crystal GaN,” Appl. Phys. Lett. 62, 1786, 1993.
    [3] S. T. Sheppard, K. Doverspike, W. L. Pribble, S. T. Allen, and J. W. Palmour, “High power microwave GaN-AlGaN HEMTs on silicon carbide,” IEEE Electron Device Lett. 20, 161, 1999.
    [4] M. A. Khan, A. R. Bhattarai, J. N. Kuznia, and D. T. Olson, “High electron mobility transistor based on a GaN-AlXGa1-XN heterojunction,” Appl. Phys. Lett. 63, 1214, 1993.
    [5] Y. F. Wu, D. Kapolnek, J. P. Ibbetson, P. Parikh, B. P. Keller, and U. K. Mishra, “Very-high power density AlGaN-GaN HEMTs,” IEEE Trans. Electron Devices 48, 586, 2001.
    [6] J. Han, A. G. Baca, R. J. Shul, C. G. Willison, L. Zhang, F. Ren, A. P. Zhang, G. T. Dang, S. M. Donovan, X. A. Cao, H. Cho, K. B. Jung, C. R. Abernathy, S. J. Pearton, and R. G. Wilson, “Growth and fabrication of GaN/AlGaN heterojunction bipolar transistor,” Appl. Phys. Lett., vol. 74, 2702, 1999.
    [7] Kuang-Po Hsueh “Studies of GaN-Based Heterojunction Bipolar Transistors” Paper. Department of Electrical Engineering National Central University ROC.
    [8] Seikoh Yoshida and Joe Suzuki, “High-temperature reliability of GaN metal semiconductor field-effect transistor and bipolar junction transistor,” J. Appl. Phys. vol. 85, 7931, 1999.
    [9] L. S. McCarthy, P. Kozodoy, M. J. W. Rodwell, S. P. DenBaars and U. K.Mishra, “AlGaN/GaN heterojunction bipolar transistor,” IEEE Electron Device Lett. 20, 277, 1999.
    [10] L. S. McCarthy, I. P. Smorchkova, P. Fini, M. J. W. Rodwell, J. Speck, S. P. DenBaars and U. K. Mishra, “Small signal RF performance of AlGaN/GaN heterojunction bipolar transistor,” Electron Lett. 38, 144, 2002.
    [11] L. S. McCarthy, I. P. Smorchkova, H. Xing, P. Kozodoy, P. Fini, J. Limb, D. L. Pulfrey, J. S. Speck, M. J. W. Rodwell, S. P. DenBaars and U. K. Mishra, “GaN HBT: Toward an RF Device,” IEEE Trans. Electron Devices 48, 543, 2001.
    [12] L. McCarthy, I. Smorchkova, H. Xing, P. Fini, S. Keller, J. Speck, S. P. DenBaars, M. J. W. Rodwell and U. K. Mishra, “Effect of threading dislocations on AlGaN’GaN heterojunction bipolar transistors,” Appl. Phys. Lett. 78, 2235, 2001.
    [13] X. A. Cao, G. T. Dang, A. P. Zhang, F. Ren, J. M. Van Hove, J. J. Klaassen, C. J. Polley, A. M. Wowchak, P. P. Chow, D. J. King, C. R. Abernathy, and S. J. Pearton, “High current, common-base GaN/AlGaN heterojunction bipolar transistors,” Electrochemical and Solid-State Lett. 3, 144, 2000.
    [14] F. Ren, J. Han, R. Hickman, J. M. Van Hove, P. P. Chow, J. J. Klaassen, J. R. LaRoche, K. B. Jung, H. Cho, X. A. Cao, S. M. Donovan, R. F. Kopf, R. G. Wilson, A. G. Baca, R. J. Shul, L. Zhang, C. G. Willison, C. R. Abernathy, S. J. Pearton, “GaN/AlGaN HBT fabrication,” Solid-State Electron. 44, 239, 2000.
    [15] J. J. Huang, M. Hattendorf, M. Feng, D. J. H. Lambert, B. S. Shelton, M. M. Wong, U. Chowdhury, T. G. Zhu, H. K. Kwon, and R. D. Dupuis, “Gradedemitter AlGaN/GaN heterojunction bipolar transistors,” Electron. Lett. 36, 1239, 2000.
    [16] B. S. Shellon, J. J. Huang, D. J. H. Lambert, T. G. Zhu, M. M. Wong, C. J. Eiting, H. K. Kwon, M. Feng and R. D. Dupuis, “AlGaN/GaN heterojunction bipolar transistors grown by metal organic chemical vapour deposition,” Electron. Lett. 36, 80, 2000.
    [17] J. J. Huang, M. Hattendorf, M. Feng, D. J. H. Lambert, B. S. Shelton, M. M. Wong, U. Chowdhury, T. G. Zhu, H. K. Kwon and R. D. Dupuis, “Temperature dependent common emitter current gain and collector-emitter offset voltage study in AlGaN/GaN heterojunction bipolar transistors,” IEEE Electron Device Lett. 22, 157, 2001.
    [18] T. Chung, J. Limb, D. Yoo, J. H. Ryou, W. Lee, S. C. Shen, R. D. Dupuis, B. Chu-Kung, M. Feng, D. M. Keogh and P. M. Asbeck, “Device operation of InGaN heterojunction bipolar transistors with a graded emitter-base design,” Appl. Phys Lett. 88, 183501, 2006.
    [19] D. M. Keogh, P. M. Asbeck, T. Chung, J. Limb, D. Yoo, J. H. Ryou, W. Lee, S. C. Shen and R. D. Dupuis, “High current gain InGaN/GaN HBTs with 300 °C operating temperature,” Electron. Lett. 42, 661, 2006.
    [20] T. Makimoto, K. Kumakura, and N. Kobayashi, “High current gains obtained by InGaN/GaN double heterojunction bipolar transistors with p-InGaN base,” Appl. Phys Lett. 79, 380, 2001.
    [21] T. Makimoto, K. Kumakura, and N. Kobayashi, “High current gain (>2000) of GaN/InGaN double heterojunction bipolar transistors using base regrowth of p-InGaN,” Appl. Phys Lett. 83, 1035, 2003.
    [22] K. P. Hsueh, Y. M. Hsin, J. K. Sheu, W. C. Lai, C. J. Tun, C. H. Hsu and B. H. Lin, “Al0.17Ga0.83N/GaN heterojunction bipolar transistors fabricated by double mesa technology,” International Electronic Devices and Materials Symposium (IEDMS), Taiwan, R.O.C., Dec. 7-8, 2006.
    [23] 李嗣涔, 管傑雄, 孫台平, 半導體元件物理, 三民書局, 1995.
    [24] Ralph E. Williams, Gallium Arsenide Processing Techniques, 學風出版社, 1983.
    [25] E. H. Rhodetick and R. H. Willian, Metal-Semiconductor Contact, 2nd ed, Oxford Science Publiscations, 1988.
    [26] Donald A. Neamen, Semiconductor Physics and Devices, 3rd ed, McGraw-Hill, 2003.
    [27] Dieter K. Schroder, Semiconductor Material and Device Characterization, 2nd ed, Wiley, 1998.
    [28] J. S. Foresi and T. D. Moustakas, “Metal contacts to gallium nitride,” Appl. Phys. Lett. 62, 2859, 1993.
    [29] S. Nakamura and G. Fosol, The Blue Laser Diode, 1997.
    [30] S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, “Hole Compensation Mechanism of p-GaN Films ,” Jap. J. Appl. Phys, 31, 1258, 1992.
    [31] H. Ishikawa, S. Kobayashi, Y. Koide, S. Yamasaki, S. Nagai, J. Umezaki, M. Koike, and M. Murakami, “Effects of surface treatments and metal work functions on electrical properties at p-GaN/metal interfaces,” J. Appl. Phys. 81, 1315, 1997.
    [32] F. G. Kalaitzakis, N. T. Pelekanos, P. Prystawko, M. Leszczynski, and G. Konstantinidis, “Low resistance as-deposited Cr/Au contacts on p-type GaN,” Appl. Phys. Lett. 91, 261103, 2007.
    [33] T. Mori, T. Kozawa, T. Ohwaki, Y. Taga, S. Nagai, S. Yamasaki, S. Asami, N.Shibata, and M. Koike, “Schottky barriers and contact resistances on p-type GaN,” Appl. Phys. Lett. 69, 3537, 1996.
    [34] J. K. Kim, J. L. Lee, J. W. Lee, H. E. Shin, Y. J. Park, and T. Kim, “Low resistance Pd/Au ohmic contacts to p-type GaN using surface treatment,” Appl. Phys.Lett. 73, 2953, 1998.
    [35] 陳隆建, 發光二極體之原理與製程, 全華科技, 2006.
    [36] T. Mori, T. Kozawa, T. Ohwaki, and Y. Taga, “Schottky barriers and contact resistances on p-type GaN,” Appl. Phys.Lett. 69, 3537, 1996.
    [37] C. Y. Hu, J. P. Ao, M. Okada, Y. Ohno, “Annealing with Ni for ohmic contact formation on ICP-etched p-GaN,” Electron Lett. 44, 2, 2008.
    [38] Hui-Feng Lin, “AlN layered structure SAW devices -design, simulation and fabrication” Paper. Department of Electronic Engineering Chung Yuan Christian University ROC.
    [39] L. S. McCarthy, I. P. Smorchkova, H. Xing, P. Kozodoy, P. Fini, J. Limb, D. L. Pulfrey, J. S. Speck, M. J. W. Rodwell, S. P. DenBaars and U. K. Mishra, “GaN HBT: Toward an RF Device,” IEEE Trans. Electron Devices 48, 543, 2001.
    [40] K. P. Hsueh, Y. M. Hsin, J. K. Sheu, W. C. Lai, C. J. Tun, C. H. Hsu, B. H. Lin, “Effects of leakage current and Schottky-like ohmic contact on the characterization of Al0.17Ga0.83N/GaN HBTs,” Solid-State Electronics. 3, 1073, 2007.
    [41] J. C. Zolper, S. J. Pearton, R. G. Wilson, and R. A. Stall, “Implant activation and redistribution of dopants in GaN”, IEEE, Ion Implantation Technology, Proceedings of the 11th International Conference, 1997.
    [42] J. K. Sheu, C. J. Tun, M. S. Tsai, C. C. Lee, G. C. Chi, S. J. Chang and Y. K. Su, “n+ -GaN formed by Si implantation into p-GaN”, J. Appl. Phys. 91, 1845, 2002.
    [43] 江博仁, “矽離子佈植於p 型氮化鎵之特性研究”, 中央大學光電科學研究所, 碩士論文, 2002.
    [44] 李明倫, “矽離子佈植在p型氮化鎵的材料分析與元件特性之研究”, 中央大學物理研究所, 碩士論文, 2002.

    QR CODE
    :::