| 研究生: |
邱俊閔 Chun-Min Chiou |
|---|---|
| 論文名稱: |
平面式鍺量子點單電子電晶體之研製與特性分析 Fabrication and Electrical Characterizations of Germanium QD Single Electron Transistor in Planar Structure |
| 指導教授: |
李佩雯
Pei-Wen Li |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 單電子電晶體 、鍺量子點 、電子束微影 |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
單電子電晶體既具有高電荷靈敏度以及低功率消耗之潛能優點,亦是元件尺寸不停微縮的趨勢下所因應而生之量子元件。本論文目的是藉由改進本研究室前一代平面式單電子電晶體之缺點,並且重新設計,進而改善元件電特性與提升良率。
在此篇論文中,我們將針對平面式的鍺量子點單電子電晶體的研製以及電流特性的分析作深入的探討研究。首先在製程上,我們先利用一奈米孔洞的製作來達成量子點的精確定位,之後利用選擇性熱氧化的方式在孔洞中心形成單顆的鍺量子點並且有對稱的穿隧介電層。接著使用電子束微影並搭配電極圖案的設計去定義元件之各端電極,簡化了以往製作單電子電晶體時因為源/汲電極與閘電極是分別去定義與形成,會有比較複雜之製程步驟。最後我們利用分析訊號以及蝕刻的方式來去大量降低在兩道微影對準製程時之不確定性,使平均對準偏移量控制得以在15 nm以內。在溫度為120 K至80 K的電性量測下,元件展現出相當清晰並且有可意義的庫倫震盪現象。最後我們分別從結構上以及量測結果上估算單電子電晶體特性參數,並進行比較與分析。
Single-electron transistors (SET) offer great potential for high charge sensitivity and low-power consumption. Besides, it’s a rational quantum device which conforms to the historical trend of the device scaling. This thesis has redesigned and reformed the SET device originated from our group before for the purpose to promote the yield rate and advance the electrical performance.
In this thesis, we demonstrated the fabrication and electrical characterizations of germanium quantum dot (Ge QD) in planar structure. We are able to position and number Ge QDs by means of fabricating a nano-cavity. After thermal oxidizing the SiGe polygonal in the nano-cavity, it produced a single Ge QD in the center with symmetrical tunneling junction. Instead of quite complicated SET process of the past that made Gate and S/D to be defined respectively, all electrodes are formed together for this SET device by particularity patterning with electronic beam lithography. Additionally, through suitable signal processing to alleviate the uncertainty of lithography alignment, we successfully reduce miss alignment to less than 15 nm in average.
The fabricated Ge QD SET exhibits reliable and clear Coulomb oscillation behaviors under gate and drain modulation at T = 80 K-120 K. In addition, we make some preliminary estimates from device structure, and compare them with measurement data.
[1] 陳啟東,“單電子電晶體簡介”,奈米物理雙月刊,第二十六卷,第三期,483-490頁,2004年6月。
[2] K. K Likharev, “Correlated discrete transfer of single electrons in ultrasmall tunnel junctions, ” IBM J. Res. Develop., vol. 32, pp. 144–158, 1988.
[3] T. A. Fulton and G.J. Dolan, “Observation of single electron charging effects in small tunnel junction,” Phys. Rev. Lett., vol. 59, pp. 109–112, 1987.
[4] M. Saitoh and T. Hiramoto, “Observation of current staircase due to large quantum level spacing in a silicon single-electron transistor with low parasitic resistance,” J. Appl. Phys., vol. 91, pp. 6725–6728, 2002.
[5] T. Hiramoto, M. Saitoh, G. Tsutsui “Emerging nanoscale silicon devices taking advantage of nanostructure physics,” IBM Journal of Research and Development, vol. 50, no. 4/5, pp. 411–418, Jul. 2006.
[6] M. Saitoh, H. Harata, and T. Hiramoto, “Room temperature demonstration of integrated silicon single electron transistor circuit for current switching and analog pattern matching,” in IEDM Tech. Dig., 2004, pp. 187–190.
[7] M. Saitoh and T. Hiramoto “Room temperature demonstration of highly-functional single-hole transistor logic based on quantum mechanical effect” IEE Electronics Letters, vol. 40, no. 13, pp. 837–838, Jul. 2004.
[8] S. Lee, K. Miyaji, M. Kobayashi, and T. Hiramoto, “Extremely high flexibilities of Coulomb blockade and negative differential conductance oscillations in room-temperature-operating silicon single hole transistor,” Appl. Phys. Lett., vol. 92, no. 7, pp. 073502-1–073502-3, Feb. 2008.
[9] S. J. Angus, A. J. Ferguson, A. S. Dzurak, and R. G. Clark, “Gate defined quantum dots in intrinsic silicon” Nano Lett. vol. 7, no. 7 pp. 2051–2055, 2007.
[10] W. H. Lim, F. A. Zwanenburg, H. Huebl, M. Mottonen, K. W. Chan, A. Morello, and A. S. Dzurak, “Observation of the single-electron regime in a highly tunable silicon quantum dot,” Appl. Phys. Lett., vol. 95, no. 24, pp. 242 102-1–242 102-4, Dec. 2009.
[11] K. W. Chan, M. Mottonen, A. Kemppinen, N. S. Kai, K. Y. Tan, W. H. Lim, and A. S. Dzurak, “Single electron shuttle based on a silicon quantum dot,” Appl. Phys. Lett., vol. 98, no. 21, pp. 212 103-1–212 103-3, Jul. 2011.
[12] S. J. Shin, C. S. Jung, B. J. Park, T. K. Yoon, J. J. Lee, S. J. Kim, J. B. Choi, Y. Takahashi, and D. G. Hasko, “Si-based ultrasmall mult-switching single-electron transistor operating at room-temperature,” Appl. Phys. Lett., vol. 97, no. 10, pp. 103 101-1–103 101-3, Sep. 2010.
[13] S. J. Shin, J. J. Lee, H. J. Kang, J. B. Choi, S.-R. Eric Yang, Y. Takahashi, and D. G. Hasko, “Room-temperature charge stability modulated by quantum effects in a nanoscale silicon island,” Nano Lett., vol. 11, no. 4, pp. 1591–1597, Apr. 2011.
[14] G. L. Chen, D. M. T. Kuo, W. T. Lai, and P. W. Li, “Tunneling spectroscopy of a germanium quantum dot in single-hole transistors with self-aligned electrodes,” Nanotechnology, vol. 18, no. 47, pp. 475402-1–475402-4, Nov. 2007.
[15] I. H. Chen, K. H. Chen, W. T. Lai, and P. W. Li, “Single Ge quantum dot placement along with self-aligned electrodes for effective management of single charge tunneling,” IEEE Trans. Elect. Dev, vol. 59, no. 12, pp. 3224–3230, Dec. 2012.
[16] Mohamed Amine Bounouar, Arnaud Beaumont, Francis Calmon, Dominique Drouin, “On the use of nanoelectronic logic cells based on metallic single electron transistors” International Conference on Ultimate Integration of Silicon ULIS 2012, Grenoble, France, Mar. 5-7, 2012.
[17] G. Droulers, S. Ecoffey, M. Pioro-Ladrière, D. Drouin, “Conception and fabrication of quantum cellular automata based on a single electron transistor process ” NanoQuebec Conference, Montreal, Canada, Mar. 20-21, 2012, pp. 1078–1080.
[18] W. Xuan, A. Beaumont, M. Guilmain, M. A Bounouar, N. Baboux, J. Etzkorn, D. Drouin, F. Calmon “Static and dynamic modeling of single-electron memory for circuit simulation,” IEEE Trans. Elect. Dev., vol. 59, no. 1, pp. 212–220, 2012.
[19] D. Griveau, S. Ecoffey, R. M. Parekh, M. A. Bounouar, F. Calmon, J. Beauvais, D. Drouin, “Single electron CMOS-Like one bit full adder ” International Conference on Ultimate Integration of Silicon ULIS 2012, Grenoble, France, Mar. 5-7, 2012.
[20] 張宇瑞,“鍺量子點在氮化矽中的形成機制與鍺量子點可見光光二極體的研製”,碩士論文,國立中央大學,民國100年。
[21] Kuan-Hung Chen, Chung-Yen Chien and Pei-Wen Li, “Precise Ge quantum dot placement for quantum tunneling devices,” Nanotechnology, vol. 21, pp. 055302-1-055302-9, Feb. 2010.
[22] P. W. Li et al., “Fabrication of a germanium quantum-dot single-electron transistor with large coulomb-blockade oscillations at room-temperature,” Appl. Phys. Lett., vol. 85, no. 9, pp. 1532–1534, Aug. 2004.
[23] 陳光亮,“具有自我對準電極鍺量子點單電洞電晶體之製作與物理特性硏究”,碩士論文,國立中央大學,民國95年。
[24] Donald A. Neamen, Semiconductor physics and devices: Basic Principles, 3rd ed., New Delhi: McGraw-Hill, 2002, pp. 171–183.
[25] S. M. Sze, Physics of Semiconductor Devices, 2nd ed., New York: John Wiley and Sons, 1981, pp. 40–41.
[26] J. Weis, E. J. Haug, K. V. Klitzing, and K. Ploog, “Transport spectroscopy of a confined electron system under a gate tip”, Phys. Rev. B, vol. 46, no. 19, pp. 12837–12840, 1992.