跳到主要內容

簡易檢索 / 詳目顯示

研究生: 楊文亞
YANG, WEN-YA
論文名稱: 振動訊號分析於自動倉儲升降機構之故障預警監測
指導教授: 黃衍任
Hwang, Yean-ren
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系在職專班
Executive Master of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 81
中文關鍵詞: 振動故障監控故障預警
外文關鍵詞: vibration, Fault monitoring, Early warning of failures
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • TFT-LCD工廠的生產都是全自動化24小時不間斷生產,而自動傳送設備是串起所有生產製程的重要命脈,每一次自動化傳送設備不預期停機,造成的影響就是生產中止,且會成TFT-LCD工廠巨大的產能損失,一般是依照經驗法則,透過判別設備振動和噪音的方式,來判別設備損壞的情況,本研究是利用PYTHON進行振動數位訊號處理,透過調整設備不同速度的實驗,建立、收集、分析,自動倉儲升降機構在時域、幅域、頻域上各項基本數據,再透過比較設備保養、調整的前後差異,將前後差異分析取得的特徵訊號,用於自動倉儲升降機構故障預警監測。
    整個監測系統利用python程式進行數據收集,數據分析,數據切割,並透過數位訊號處理,在時域與頻域上進行分析,可以有效預測自動倉儲系統升降減速機使用情況,透過預警系統通報,以及工程上維修調整後,能有效避免不預期停機造成生產的中斷。


    The production of TFT-LCD factory is fully automated 24 hours non-stop production, and the automatic transmission equipment is an important lifeline connecting all production processes. Every time the automatic transmission equipment is unexpectedly stopped, the impact is production suspension, and will result in huge capacity loss of TFT-LCD factory. Generally, according to the rule of thumb, equipment damage is judged by judging equipment vibration and noise, This study uses PYTHON for vibration digital signal processing. Through experiments adjusting equipment at different speeds, basic data of automatic warehouse lifting mechanisms in time domain, amplitude domain, and frequency domain are established, collected, and analyzed. By comparing the differences before and after equipment maintenance and adjustment, the characteristic signals obtained from the analysis of the differences before and after are used for automatic warehouse lifting mechanism fault warning monitoring.

    The entire monitoring system utilizes Python programs for data collection, data analysis, data cutting, and digital signal processing to analyze in both the time and frequency domains. It can effectively predict the usage of the automatic storage system's lifting reducer, report through the warning system, and effectively avoid production interruptions caused by unexpected downtime after maintenance and adjustment in the process.

    摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3研究動機與目的 3 1.4論文架構 4 1.5自動倉儲升降機構介紹 5 1.5.1升降馬達 6 1.5.2 減速機 7 1.5.3傳動鏈條與齒輪 9 1.5.4研究的範圍及限制 9 第二章 振動系統與訊號轉換 11 2.1機械振動的分類 11 2.1.1機械振動的振動規率 11 2.1.2機械振動的振動測量 12 2.1.3機械振動的性質 13 2.2機械振動的故障診斷 16 2.2.1機械振動按振動設備分類 17 2.2.2機械振動按振動頻率分類 17 2.3振動信號的描述 18 2.3.1 振動信號基本描述 19 2.3.2 設備狀態信號的物理表現 22 2.4振動訊號數位信號處理 22 2.4.1 振動數位訊號採樣 23 2.4.2 採樣間隔及採樣定理 24 2.4.3 解決頻率混淆的辨法 25 2.4.4 採樣長度和頻率分辨率 25 2.5 振動信號時域分析 26 2.6 振動信號頻域分析 28 第三章 PYTHON振動信號處理與數據分析 31 3.1 PYTHON振動信號處理系統流程介紹 31 3.2 振動訊號量測系統介紹 31 3.3 PYTHON程式流程圖 34 3.3.1 PYTHON時域波形圖 36 3.3.2 PYTHON幅域波形圖 38 3.3.3 PYTHON頻域波形圖 39 第四章 實驗結果討論 43 4.1 升降機構振動實驗量測 43 4.2 升降機構振動實驗結果分析(時、幅域) 48 4.2.1實驗結果分析(時域) 48 4.2.2實驗結果分析(幅域) 50 4.3 轉動機構基頻倍頻分析 52 4.4 升降機構振動實驗結果分析(頻域) 56 4.4.1 異常模擬與分析驗證 56 4.4.2 升降鏈條鬆動實驗 57 4.4.3異常特徵分析 57 4.5異常監測系統與通報 59 第五章 結論及未來展望 61 5.1 結論 61 5.2 未來研究與建議 62 參考文獻 64

    [1]Z.L.Gaing,”Wavelet-based neural network for power disturbance recognition and classification,”IEEE Transactions on Power Delivery,vol.19,no.4,2004,pp.1560-1568.
    [2]林朝乾, “應用振動量測於紙廠設備之預知保養”,屏東科技大學碩士畢業論文,2004年.
    [3]張志宏, “應用加速規、麥克風和高速攝影機量測機械系統訊號之振動頻譜分析”,成功大學碩士畢業論文,2009年.
    [4]T. Rehm and P.Schmidt, “Method and apparatus for reducing resonance in a dual inertia system,”U.S Patent 6,144,181,Rockwell Technologies, 2000.
    [5]S.H. Kia, H Henao, and G-A. Capolino, “Torsional vibration assessment using induction machine electromagnetic torque estimation,” IEEE Transactions on Industrial Electronics, vol. 57, no. 1, 2010, pp. 209-219.
    [6]王士詮,“伺服控制系統之機械振動偵測與抑制”,台北科技大學碩士畢業論文,2013年.
    [7]陳信華,“轉子動態系統振動之分析與研究”,虎尾科技大學碩士畢業論文,2009年.
    [8]陳冠達, “應用機器學習方法以振動信號診斷螺旋傘齒輪裝配誤“逢甲大學碩士畢業論文,2022年.
    [9]徐平,郝旺身,2016,8,振動信號處理與數據分析,科學出版社.[10]Allen B Downey,著,繆文,譯,2018,2,Python數字信號處理應用,人民郵電出版社.
    [11]黃志堅,2017,4,機械設備振動故障監測與診斷,化學工業出版社.

    QR CODE
    :::