跳到主要內容

簡易檢索 / 詳目顯示

研究生: 英德拉
Indra Rio Saputro
論文名稱: Seismic Performance of Braced Frames with Buckling Restrained Slit Pipe Dampers
Seismic Performance of Braced Frames with Buckling Restrained Slit Pipe Dampers
指導教授: 許協隆
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 131
中文關鍵詞: 切縫鋼管挫屈束制阻尼器耐震行為消散能量斜撐構架
外文關鍵詞: Buckling restrained slit pipe dampers, Seismic performance, Energy dissipation, Braced frames
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中提出一種新型阻尼器,並將其命名為「切縫鋼管挫屈束制阻尼器」。此阻尼器同時結合了鋼管與挫屈束制斜撐的特性,在結構物受側向力時,有效展現良好的消能能力。在此消能器中,以最外層鋼管提供束制作用,並利用填充之混凝土控制內層切縫鋼管之後挫屈行為。內層鋼管的切縫設計,可提供不同的結構消能能力,此切縫鋼管的塑性行為可對整體結構提供穩定的消能表現。
    研究中針對一系列切縫鋼管挫屈束制阻尼器及配置此阻尼器之半剛接構架進行反覆載重試驗。試驗結果發現,若在阻尼器內層鋼管內做適當的切縫,斜撐構架可在位移比2.5%內展現良好的強度表現和消能能力。由試驗結果比較中得知,加裝切縫鋼管挫屈束制阻尼器的斜撐構架,能有效地提升整體構架在強度、勁度、變形及能量消散上的能力,因此,此阻尼器應為有效之結構耐震性能提升設計。


    A new energy dissipation device that combined the BRB and pipe damper systems to form the buckling restrained slit pipe dampers (BRSPD) is proposed. This device incorporates a slit pipe damper that is limited by the inner tube. The outer tube was used as a restraining mechanism. Slit in the pipe is used to control energy dissipation and deformation capacity. This damper is designed to provide adequate hysteretic performance through core yielding under both tension and compression.
    A series of cyclic loading tests were conducted on the BRSPD and semi-rigid frames with the proposed devices. It was found that the BRSPD sustained significant strength and energy dissipation capability before reaching 2.5% drift ratio, if adequate number of slits in the core pipe was used. Comparisons of the test results showed that the frame strength was increased when the buckling restrained slit pipe dampers were adopted. Significant gains in strength, stiffness, deformation capacity and energy dissipation for framed structures with BRSPD justified the effectiveness of the proposed design.

    ABSTRACT i 摘要 ii ACKNOWLEDGEMENTS iii TABLE OF CONTENTS iv LIST OF TABLES viii LIST OF FIGURES ix CHAPTER 1 1 INTRODUCTION 1 A. Introduction 1 B. Motivations 2 C. Objectives 3 D. Outlines 3 CHAPTER 2 4 LITERATURE REVIEW 4 A. Inelastic Postbuckling and Cyclic Behavior of Tubular Braces 4 B. Pipe Dampers 5 C. Concentrically Braced Frame 6 D. Steel Frames with Semi-Rigid Connection 6 E. Top and Seat Angle 7 F. Theoretical study on design methods of BRB 8 CHAPTER 3 METHODOLOGY 9 A. Theory 9 1. Strong Column Weak Beam Philosophy 9 2. Bolted Top and Seat Angle Connection 11 3. Double web angle with slot connection 11 4. Buckling restrained slit pipe dampers 11 5. Braced frame with buckling restrained slit pipe dampers 11 6. Bending Capacity of Beam 12 7. Hinge Gussets and High Strength Bolt 13 8. Strength of buckling restrained slit pipe dampers 13 B. Finite Element Analysis 15 1. Analytical model for buckling restrained slit pipe damper simulation ……………………………………………………………………………15 2. Analytical model for frames with buckling restrained slit pipe dampers ……………………………………………………………………………16 3. Chaboche kinematic hardening for cyclic analysis 18 4. Concrete for restrainer analysis 18 C. Mechanism of damper 19 CHAPTER 4 EXPERIMENTAL PROGRAM 20 A. General 20 B. Specimen Design 20 1. Set-Up for Component Tests 22 2. Set-up for Braced Frame Tests 22 C. Details Of Specimens 22 1. Brace member 22 2. Component Test 23 3. Semi Rigid Moment Frame 23 4. Braced Frame 24 D. Materials 24 1. Steel structures 24 2. Concrete 25 E. Specimen Construction 25 F. Instrumentation 25 1. Strain Gauges 25 2. Transducers 26 3. Data Acquisition System 26 G. Lateral Support 26 F. Loading Protocol 26 CHAP TER V RESULT AND OBSERVATION 27 A. General 27 B. Experimental Observations 27 C. Component Tests 27 1. Specimen SL 8-4 27 2. Specimen SL 8-2 28 3. Specimen SL 6-4 29 4. Specimen SL 6-2 30 5. Specimen SL 4-4 31 6. Specimen SL 4-2 32 D. Frame Tests 33 1. Specimen MRF 12 33 2. Specimen BRF 6-4 34 3. Specimen BRF 6-2 34 4. Specimen BRF 4-4 35 5. Specimen BRF 4-2 36 CHAP TER VI 37 COMPARISONS AND DISCUSSIONS 37 A. General 37 B. Comparisons of Strength between Experimental and Analytical Results 37 1. Finite Element Simulation 37 2. Stiffness 37 3. Strength 38 4. Deformation Capacity 39 5. Energy Dissipation 40 6. Performance Evaluation 40 7. Design Recommendations 41 CHAP TER VII 42 CONCLUSIONS 43 A. General 43 B. Suggestions 44 REFERENCES 45 TABLES 48 FIGURES 57

    AISC. (2010). Specification for Structural Steel Buildings (AISC 358-05 ed.). Chicago, IL: American Institute of Steel Construction.

    Azizinamini, A., & Radziminski, J. (1988). Static and cyclic performance of semi-rigid steel beam to column connections.
    Journal of Structural Engineering ASCE, 2879–2997.

    Bea, R. G., Aghakouchack, A. A., & Asgarian, B. (2005). Inelastic Postbuckling and Cyclic Behavior of Tubular Braces. Journal of Offshore Mechanics and Arctic Engineering, 256-262.

    Benschoten, P. V., Al Satari, M., & Hussain, S. (2013). Buckling Restrained Braced Frame (BRBF) Structures: Analysis, Design and Approvals Issues. Coffman Engineers, Inc. Los Angeles, CA, 1-12.

    Berman, J. W., & Bruneau, M. (2009). Cyclic Testing of a Buckling Restrained Braced Frame with Unconstrained Gusset Connections. Journal of Structural Engineering ASCE, 1499-1510.

    Broderick, B. M., & Hunt, A. D. (2012). Quasi-Static Testing and Correlative Dynamic Analysis of Concentrically Braced Frames with Hollow Steel Braces and Gusset Plate Connections.

    Calado, L., De Matteis, G., & Landolfo, R. (2000). Experimental response of top and seat angle semi-rigid steel frame connection. Materials and Structures, 33, 499-510.

    Citipitioglu, A. M., Haj-Ali, R. M., & White, D. W. (2002). Refined 3D finite element modeling of partially-restrained connections including slip. Journal of Structural Engineering ASCE, 995–1013.

    Corte, G. D., D'Aniello, M., & Mazzolani, F. M. (2009). “All-steel” buckling-restrained braces for seismic upgrading of existing reinforced concrete buildings. Bologna.

    Danesh, F., Pirmoz, A., & Daryan, A. S. (2007). Effect of shear force on the initial stiffness of top and seat angle connections with double web angles. Journal Construction Steel, 1208–1218.

    Değertekin, Ö. S., & Hayalioglu, M. S. (2004). Design of Non-Linear Semi-Rigid Steel Frames With Semi-Rigid Column Bases. Electronic Journal of Structural Engineering, 1-16.

    Garlock, M. M., Ricles, J. M., & Richard, S. (2003). Cyclic Load Tests and Analysis of Bolted Top-and-Seat Angle Connections. Journal of Structural Engineering ASCE, 1615-1625.

    Guo, Y. L., Zhu, J. S., Zhou, P., & Zhu, B. L. (2017). A new shuttle-shaped buckling-restrained brace. Theoretical study on buckling behavior and load resistance. Engineering Structures, 223-241.

    Hao, H. (2014). Performance of Non-Buckling Segmented Brace Members for Mitigating Seismic Responses of Frame Structures. Australian Earthquake Engineering Society Conference (pp. 21-32).

    Victoria: Australian Earthquake Engineering Society.
    Imaoka, S. (4 May 2008). Chaboche Nonlinear Kinematic Hardening Model. Memo Number:STI0805A.

    Jiang, Z. Q., Dou, C., Guo, Y. L., & Zhang, A. L. (2017). Theoretical study on design methods for pinned assembled BRB with flat core. Engineering Structures 133, 1-13.

    Kumar, P. A., Sahoo, D. R., & Kumar, N. (2015). Limiting values of slenderness ratio for circular braces of concentrically braced frames. Journal of Constructional Steel Research 115, 223-235.

    Kurt, M. M., & Abolhassan, A.-A. (2003). Steel Semirigid Column–Tree Moment Resisting Frame Seismic Behavior. Journal of Structural Engineering ASCE, 1243.

    Lemaitre, J., & J, L. C. (1990). Mechanics of Solid Materials. Cambridge.

    M.ASCE, Y. G., Mizuno, K., & Kumar, G. P. (2012). Nonlinear Finite Element Analysis for Cyclic Behavior of Thin-Walled Stiffened Rectangular Steel Columns with In-Filled Concrete. Journal of Structural Engineering, 571-584.

    Mahjoubi, S., & Maleki, S. (2016). Seismic performance evaluation and design of steel structures equipped with dual-pipe dampers. Journal of Constructional Steel Research, 25-39.

    Maleki, S., & Mahjoubi, S. (2014). Infilled-pipe damper. Journal of Constructional Steel Research, 45-58.

    Promoz, A., & Mohammadrezapour, E. (2008). Behavior of Bolted Top-Seat Angle Connection Under Combined Axial Tension and Moment Loading. Beijing: World Conference on Earthquake Engineering Press.

    Seker, O., Akbas, B., Seker, P. T., Faytarouni, M., Shen, J., & Mahamid, M. (2017). Three-segment steel brace for seismic design of concentrically braced frame. Journal of Constructional Steel Research, 211-227.

    Surendran, N., & P, A. V. (2017). Buckling Restrained Braces (BRB) – A Review. International Research Journal of Engineering and Technology (IRJET), 2320-2324.

    Symans, M. D., Charney, F. A., Whittaker, A. S., Constantinou, M. C., Kircher, C. A., Johnson, M. W., & McNamara, R. J. (2008). Energy Dissipation Systems for Seismic Applications:Current Practice and Recent Developments. Journal of Structural Engineering, 3-21.

    Tao, Z., Li, W., Shi, B.-L., & Han, L.-H. (2017). Behaviour of bolted end-plate connections to concrete-filled steel columns. Journal of Constructional Steel Research, 194-208.

    Tjitradi, D., Eliatun, E., & Taufik, S. (2017). 3D ANSYS Numerical Modeling of Reinforced Concrete Beam Behavior under Different Collapsed Mechanisms. International Journal of Mechanics and Applications , 14-23.

    Uriz, P., Filippou, F. C., & Mahin, S. A. (2008). Model for Cyclic Inelastic Buckling of Steel Braces. Journal of Structural Engineering , 619-628.

    Zhe Qu, S. K. (2015). Seismic responses of reinforced concrete frames with buckling restrained braces in zigzag configuration. Engineering Structures 105, 12-21.

    QR CODE
    :::