| 研究生: |
徐偉展 Wei-zhan Xu |
|---|---|
| 論文名稱: |
不同空調運作方式對於公共空間熱舒適度之數值模擬分析 The Numerical Analysis of Thermal Comfort in Public Space by Different Operational Modes of Air Conditioners |
| 指導教授: |
洪勵吾
Lih-Wu Hourng |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 熱舒適 、CFD 、空調 |
| 外文關鍵詞: | CFD, Air Conditioner, Thermal Comfort |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一般室內空調啟動後,即依據空調配置方式,對整個空間進行降溫,若考量空間人數與活動範圍,改變空調的運作模式,即可減省空調所需能源。本研究將利用計算流體力學的(CFD)方法,探討不同的空調運作方式如:十二進風口、單一進風口、雙進風口、調整進風口角度,在不同流速與溫度下,對於熱舒適度的影響。其中要使小區域空間達到熱舒適度,以單一出風口表現較佳。這是因為進風口彼此間的距離或總數增加,使室內流場中的渦流變多,因此提高冷熱空氣的混合,造成目標區域熱舒適度變差。此外在流速與溫度參數對於熱舒適度的影響,在溫度較低時,以調整流速影響較大;而進風口較高溫時,以調整溫度較大。另外以進風口與回風的流速、溫度進行空調能源使用評估,單一進風口最為節能,而若要維持相同的熱舒適度,在流場的初期空調以低溫、低流速較為節能;流場後期則提高溫度、流速較為節能。
The cooling of space depends on the configuration of the air conditioners. Considering the numbers of people and their activities, we can change the mode of operation to reduce the energy consumption. In this study, the computational fluid dynamics (CFD) methods are used to analyze the differences of thermal comfort among operation modes, for examples: twelve inlets, single inlet, dual inlets and the angle of inlet at different velocities and temperature . The results show that single inlet system yiedlds better thermal comfort. This is because that the decreasing of distance between the air inlets or the increasing of number of air inlet generate lots of turbulence in the flow field which mix hot and cold air, and therefore cause the deterioration of thermal comfort. When the inlet temperature is low, flow velocity has more effect cmpared to other parameters. As the inlet temperature is relatively high, changing inlet temperature affect the thermal comfort mostly. The assessment of energy efficiency based on the temperature and velocity in inlet and outlet has been studied. At shows that the single inlet is the most efficient. If we want to maintain the same thermal comfort level but reduce the energy comsuption, the best way is to feed air with low temperature and low velocity in the beginning, and feed air with a higher temperature and velocity after the temperature reaching a certain value.
1.許守平,冷凍空調原理與工程,全華出版社,臺北,民國八四年
2.袁秀玲,現代制冷空調理論應用與新技術,西安交通大學,西安,(2009)
3.李先庭,趙彬,室內空氣流動數值模擬,機械工業出版社,北京,(2009)
4.邱建宏,“不同空調通風條件對於室內空間流場之CFD模擬”,國立中央大學土木工程學系碩士論文,(2010)
5.葉歆,建築熱環境,淑馨出版社,臺北,民國八六年
6.F. C. Houghten, C. P. Yaglou , “Determination of the Comfort Zone”, ASHRAE Research Report No.673, ASHRAE Transations 44, pp.361, (1923)
7.H.S. Belding, T.F. Hatch, “Index for evaluating heat stress in terms of resulting physiological strains, Heat Piping Air Condition, 27 ,129-136,(1955)
8.行政院勞工委員會勞工安全衛生研究所,高溫作業勞工熱暴露劑量之調查研究,行政院勞工委員會勞工安全衛生研究所,民國八三年
9.ISO, “Ergonomics of the thermal environment-Analytical determination and interpretation of thermal comfort using calculation of PMV and PPD indices and local thermal comfort criteria”,ISO 7730,(2005)
10.B.W. Olesen, “Introduction to thermal comfort standards to the proposed new version of EN ISO 7730”, Journal of Building and Environment ,Vol. 34. pp.537-548,(2002)
11.ASHRAE , “Thermal environmental conditions for human occupancy”, ASHRAE Standard 55, (2004).
12.G.M. Master 著,葉欣誠 譯,環境工程與科學概論,五南出版社,台北市,民國九十一年
13.P.V. Nielsen, “English translation:Flow in air condition room”,Ph.D. thesis ,Technical University of Demark,(1976)
14.P.V. Nielsen, A. Restivo, J.H. Whitelaw, “The velocity characteristics of ventilated room”, Journal of Fluids Engineering, Vol.100, pp.291-298, (1978)`
15P.V. Nielsen, A. Restivo, J.H. Whitelaw, “Buoyancy affected flows in ventilated room”, Journal of Heat and Mass Transfer, Vol. 2, pp.115-127,(1979)
16.S. Murakami, S. Kato, “Numerical and experimental study on room airflow-3D predictions using the k-ε turbulence model”, Journal of Building and Environment ,Vol. 24, pp.85-97,(1989)
17.S. Murakami, S. Kato, H. Nakagawa, “Numerical prediction of horizontal nonisothermal 3-D jet in room based on the k-ε model”, ASHRAE Transactions Vol.97, Pt.1, (1991)
18.Q. Chen, “Prediction of room air motion by Reynods-stress models”, Journal of Building and Environment ,Vol. 31,pp.233-244,(1996)
19.R.Cheesewright, K.J. King, S. Ziai, “Experimental data for the validation of computer codes for the prediction of two-dimensional buoyant cavity flow. In significant questions in buoyancy affected enclosure or cavity flow”, Journal of ASME, pp.75-81,(1986)
20.A. Restivo, “Turbulent flow in ventilated room, University of London”, Ph.D. thesis, (1979)
21.D. Cooper, D.C. Jackson, B.E. Launder, G.X. Liao, “Impinging jet studies for turbulence model assessment-I. Flow-field experiments”, International Journal of Heat and Mass Transfer, Vol. 36, pp.2675-2684, (1993)
22.R.M. Susin, G.A. Lindner, V.C. Mariani, K.C. Mendonca, “Evaluating the influence of the width of inlet slot on the prediction of indoor airflow : Comparison with experimental data”, Journal of Building and Environment , Vol. 44, pp.971-986,(2009)
23.S. Murakami, S. Kato, T. Kim, “Indoor climate design based on CFD coupled simulation of convection, radiation, and HAVC control attaining a given PMV value”, Journal of Building and Environment , Vol. 36, pp.701-709,(2001)
24.L. Zhou, F. Haghighat, “Optimization of ventilation systems in office environment,Part II:Results and discussions”, Journal of Building and Environment ,Vol.44, pp.657-665,(2009)
25.B.W Olesen, “Thermal comfort” , Bruel and Kjaer, Technical review, No.2,pp.1-43,(1982)
26.Fluent User’s Guide , Release 6.3,(2006)
27.李人憲,有限體積法基礎,國防工業出版社,北京,(2005)
28.王瑞金,張凱,王剛,Fluent技術基礎與應用實例—CAD/CAM/CAE實用技術,清華大學出版社,北京,(2007)。