| 研究生: |
黃翊軒 Yi-Shiuan Huang |
|---|---|
| 論文名稱: |
老鼠纖維母細胞L929貼附於微電極所造成的阻抗變化之模擬 Simulation of mouse fibroblasts L929 attached on micro scale electrodes caused of impedance change |
| 指導教授: | 蔡章仁 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 226 |
| 中文關鍵詞: | 阻抗式生物感測器 、有限元素模擬 、細胞貼附 |
| 外文關鍵詞: | Impedance sensor, FEM simulation, cell adhesion |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
研究細胞的貼附能夠幫助我們了解細胞的生長行為,對於利用活體細胞測試毒物或是藥品對細胞活性的影響,細胞貼附與否是判斷細胞生長情形的重要指標之一。近來量測細胞的電阻抗特性逐漸取代了細胞染色法,藉由分析細胞的阻抗特性,能夠幫助我們迅速且有效觀察細胞特徵行為。本研究提供一研究細胞貼附對阻抗影響的新方法,根據L929細胞貼附過程中細胞形態的變化,分別建構6個模型,模擬討論細胞貼附過程中,量測阻抗因電極上受細胞與細胞外基質蛋白(ECM)覆蓋的面積不同、細胞-電極距離的不同,所造成的阻抗變化特性。研究結果顯示,隨著電極表面受細胞覆蓋的面積愈大、細胞-電極距離愈小,會使得中頻的歸一阻抗變化量(NIC)愈大;隨著電極表面受細胞外基質(ECM)覆蓋的面積愈大,會使得低頻的歸一阻抗變化量(NIC)愈小,當電極表面受細胞與ECM覆蓋面積達92.16 %時,中頻(100 kHz)阻抗變化值達1260 %,低頻(1 Hz)阻抗變化達-81.9 %。模擬結果說明了當量測電極尺寸與表面所覆蓋的細胞面積愈相近時,細胞貼附所造成的阻抗變化會愈明顯,也說明了細胞貼附時所分泌產生的ECM物質,會造成低頻阻抗量測值下降的現象。
Analysis of cell adhesion property can help us to understand cell growth situation and test cytotoxicity effect of different toxicants to cells. Recently, electrical cell substrate impedance sensing (ECIS) replaced cell staining; analyzing the impedance characteristics of cells will help us to study the situation and property of cell growth behavior rapidly and effectively. In this study, we proposed a new approach to analyse the L929 cell growth on electrode surface using finite element method (FEM) simulation. According to L929 cell morphology change on cell covered electrode surface during growth, six electrical models were designed respectively. FEM simulation was carried out to measure impedance response due to the change of coverage cell, extracellular matrix (ECM) area on electrode, and the change of resistive gap region of cell-electrode. The results showed that the larger cell covered area on electrode and shorter cell-electrode gap caused maximμm change in normalized impedance change (NIC) at intermediate frequency (100 kHz), and at lower frequencies (1 Hz) minor change in normalized impedance change (NIC) was observed due to ECM covered on electrode surface. When the coverage of cell and ECM reached 92% of total electrode area, the impedance at intermediate frequency changed by 8 folds and at lower frequency impedance changed by -0.8 folds from that of measured impedance in bare electrodes. FEM simulation results showed that when cell covered area is similar to electrode size, the significant change in impedance will be observed. The result also indicated the ECM protein produced by cell attachment will contribute to decrease the impedance at lower frequency.
[1] L. M. C. Silva, A. C. S. Pinto, A. M. Salgado, M. A. Z. Coelho, “Dvelopment of Potentiometric Urea Biosensor Based on Canavalia ensiformis Urease,” Biosensors - Emerging Materials and Applications, 2011.
[2] D. A. Harrington, P. van den Driessche, “Mechanism and equivalent circuits in electrochemical impedance spectroscopy,” Electrochimica Acta , vol.56, pp. 8005–8013, 2011.
[3] A. Lasia, “Electrochemical Impedance Spectroscopy and its Applications,” Modern Aspects of Electrochemistry, vol.32, pp. 143–248, 1999.
[4] C. Fernandez-Sanchez, C. J. McNeil, “Electrochemical impedance spectroscopy studies of polymer degradation: application to biosensor development,” Trends in Analytical Chemistry, vol.24, No. 1, 2005.
[5] M. Pacios1, I. M. Fernández, R. Villa, P. Godignon, M. Del Valle1, J. Bartrolí, M. J. Esplandiu, “Carbon Nanotubes as Suitable Electrochemical Platforms for Metalloprotein Sensors and Genosensors,” Carbon Nanotubes – Growth and Applications, vol.16, 2011.
[6] 吳浩青,李永舫,電化學動力學,科技圖書出版社,2001。
[7] 國立交通大學生物資訊研究所,台聯大生命科學課程改進計畫教學資料。
[8] X. Huang, D. Nguyen, D. W. Greve, and M. M. Domach, “Simula-tion of Microelectrode Impedance Changes Due to Cell Growth, ” IEEE Sensors Journal, vol.4, no5, pp. 576-583, 2004.
[9] R. O. Hynes, “Integrins: versatility, modulation, and signaling in cell adhesion.”, Cell vol. 69(1), pp. 11–25, 1992.
[10] 蔣宗恆,低氧和生長因子誘發樹突生長對神經細胞貼附能力的影響,國立成功大學醫學工程碩士論文,pp. 9,2008。
[11] I. Kaverina, O. Krylyshkina, J. V. Small, “Regulation of substrate adhesion dynamics during cell motility,” The International Journal of Biochemistry & Cell Biology, vol. 34, pp. 746–761, 2002.
[12] W. B. Tsai, M. C. Wang, “Effects of an avidin-biotin binding system on chondrocyte adhesion and growth on biodegradable polymers,” Macromolecular Bioscience, vol. 5, pp. 214–221, 2005.
[13] G. Lemon, S. L. Waters, F. R. A. J. Rose, J. R. King, “Mathematical modelling of hμman mesenchymal stem cell proliferation and differentiation inside artificial porous scaffolds, ” Journal of Theoretical Biology, vol.249, pp. 543–553, 2007.
[14] L. J. Ream, “EXTRACELLULAR MATRIX, ” Department of neu-roscience, Cell Biology and Physiology.
[15] Life Science, Adhedion of cells and extracellular matrix, 2010.
[16] C. L. Hall, C. W. Dubyk, T. A. Riesenberger, D. Shein, E. T. Keller, K. L. Golen, “Type I Collagen Receptor (α2β1) Signaling Promotes Prostate Cancer Invasion through RhoC GTPase, ” Neoplasia, vol.10, pp. 797–803, 2008.
[17] R. Rajaraman1, D.E. Rounds, S.P.S. Yen, A. Rembaμm, “A scanning electron microscope study of cell adhesion and spreading in vitro”, Experimental Cell Research vol. 88, pp. 327–339, 1974.
[18] K. F. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J., vol. 76, pp. 509–516, 1999.
[19] X. Huang, D.W. Greve, D. D. Nguyen, M.M. Domach, “Impedance based biosensor array for monitoring mammalian cell behavior,” Proceeding of IEEE Sensor, vol.1, pp. 304-309, 2003.
[20] M. Brischwein, S. Herrmann, W. Vonau, F. Berthold, H. Grothe, E. R. Motrescua, B. Wolfa, “Electric cell-substrate impedance sensing with screen printed electrode structures, ” Lab Chip, vol.6, pp. 819–822, 2006.
[21] D. D. Nguyen, M. M. Domach, X. Huang, D. W. Greve “Impedance Array Studies of Mammalian Cell Growth,” Sensors Proceedings of IEEE, vol.1, pp. 304–309, 2003.
[22] X. Huang, D.W. Greve, D. D. Nguyen, M.M. Domach, Impedance based biosensor array for monitoring mammalian cell behavior, Proceeding of IEEE Sensor, vol.1, pp. 304-309, 2003.
[23] D. D. Nguyen, X. Huang, D. W. Greve, M. M. Domach1, “Fibroblast Growth and H-7 Protein Kinase Inhibitor Response Monitored in Microimpedance Sensor Arrays,” Biotechnol Bioeng, vol.87, pp. 138–144, 2004.
[24] I. Giaever and C. R. Keese, “Micromotion of mammalian cells measured electrically,” in Proc. Natl. Acad. Sci., vol. 88, pp. 7896–7900, 1991.
[25] S. Cho, H. Thielecke, “Electrical characterization of hμman mesenchymal stem cell growth on microelectrode,” Microelectronic. Eng., 85 (5–6), pp. 1272–1274, 2008.
[26] R. Ehret, W. Baμmann, M. Brischwein, A. Schwinde, B. Wolf, “On-line control of cellular adhesion with impedance measurement using interdigitated electrode structure,” Med. Biol. Eng. Comput., vol. 36, pp. 365-370, 1998.
[27] E. Moore, O. Rawley, T. Wood, P. Galvin , “Monitoring of cell growth in vitro using biochips packaged with indiμm tin oxide sensors,” Sensors and Actuators B , vol.139 , pp. 187–193, 2009.
[28] Jacques Padawer, Ph.D. Professor Albert Einstein Coll Med Bronx, NY, USA.
[29] K. V. Singh, A. M. Whited, Y. Ragineni, T. W. Barrett, J. King, R. Solanki, “3D nanogap interdigitated electrode array biosensors,” Anal Bioanal , Chem 397, pp. 1493–1502, 2010.
[30] D.W. Greve, X. Huang, D. Nguyen, M.M. Domach, “Modeling of impedance of cell-covered electrodes, ” IEEE, 2 (22–24), pp. 1358–1363, 2003.
[31] A. Yufera, A. Olmo, P. Daza and D. Canete, “Cell Biometrics Based on Bio-Impedance Measurements,”2011.
[32] S.Cho, “Electrical Impedance Simulation and Characterization of Cell Growth Using the Fricke Model.,” Department of Biomedical Engineering, 2012.
[33] M. H. Wang, M. K. Chen and L. S. Jang, “Electrical characterization of single HeLa cell using 2D simulation and spectroscopy measurement, ” Biomedical Engineering Conference, 2008.
[34] J. W. Wang, M. H. Wang, L. S. Jang, “Effects of electrode geometry and cell location on single-cell impedance measurement, ” Biosensors and Bioelectronics, vol.25, pp. 1271-1276, 2010.
[35] H. Morgan, T. Sun, D. Holmes, S. Gawad, N. G. Green, “Single cell dielectric spectroscopy, ” INSTITUTE OF PHYSICS PUBLISHING, vol. 40, pp. 61-70, 2007.
[36] H. Zhou, R. D. Tilton, L. R. White, “The role of electrode impedance and electrode geometry in the design of microelectrode systems, ” Journal of Colloid and Interface Science 297, pp. 819-5831, 2006.
[37] M. Mutlu, Biosensors in Food Processing, Safety, and Quality Control, ISBN:978-1-4398-1985-2.
[38] E. Binachi, F. M. Bellati, E. Rollo, G. Dubini, C. Guiducci, “Model Of An Interdigitated Electrodes System For Cell Counting Based On Impedance Spectroscopy, ” Excerpt from the Proceedings of the 2012 COMSOL Conference in Milan, 2012.
[39] E. Bianchi, E. Rollo, S. Kilchenmann, F. M. Bellati, E. Accastelli, C. Guiducci “Detecting Particles Flowing through Interdigitated 3D Microelectrodes,” 34th Annual International Conference of the IEEE EMBS, 2012.
[40] T. Sun, H. Morgan “Single-cell microfluidic impedance cytometry: a review,” Microfluid Nanofluid, vol.8, pp. 423–443, 2010.
[41] L. Wang, H. Wang, L. Wang, K. Mitchelson, Z. Yu, J. Cheng, “Analysis of the sensitivity and frequency characteristics of coplanar electrical cell-substrate impedance sensors,” Biosensors and Bioelectronics, vol.24, pp.14–21, 2008
[42] W. Wang, K. Foley, X. Shan, S. Wang, S. Eaton, V. J. Nagaraj, P. Wiktor, U. Patel, N. Tao, “Single cells and intracellular processes studied by a plasmonic-based electrochemical impedance microscopy,” Nature Chemistry, vol.3, pp. 249-255, 2011.
[43] Y. Takahashi, S. Takashima, “Frequency domain analysis of membrane capacitance of cultured cells (HeLa and myeloma) using the micropipette technique”, Biophysical Journal vol. 58, pp. 143–148, 1990.
[44] S. Cho and H. Thielecke, “Micro hole-based cell chip with impendence spectroscopy”, Biosensors and Bioelectronics, vol. 22, pp. 1764-1768, 2007.
[45] H. Fricke, S. Morse, “A mathematical treatment of the electrical conductivity and capacity of disperse systems. I.” The electric conductivity of a suspension of homogeneous spheroids, Physical Review, vol.24, pp. 575-587, 1924.
[46] H. Fricke, “A mathematical treatment of the electric conductivity and capacity of disperse systems. II.” The capacity of a suspension of conducting spheroids by a non-conducting membrane for a current of low frequency, Physical Review, vol.26, pp. 678-681, 1925.
[47] H. Fricke, S. Morse, “The electric capacity of tμmors of the breast., Journal of Cancer Research,” vol.10, pp. 340-376, 1926.
[48] J. L. Damez, S. Clerjon, S. Abouelkaram, J. Lepetit, “Dielectric behavior of beef meat in the 1–1500 kHz range: Simulation with the Fricke/Cole–Cole.,” Meat Science, vol.77, pp. 512-519, 2007.
[49] L. Yang, Y. Li, C. L. Griffis, M. G. Johnson, “Interdigitated microelectrode (IME) impedance sensor for the detection of viable Salmonella typhimuriμm,” Biosensors and Bioelectronics, vol.19, pp. 1139–1147, 2004.
[50] L. A. Geddes, “Electrodes and the Measurement of the Bioelectric Events.” New York: Wiley, 1972.
[51] M. Miskian, J.J. Kasianowicz, B. Robertson, and O. Petersons, “Frequency response of alternating currents through the Staphylococcus aureus α-hemolysin ion channel,” Bioelectromagnetics, vol.22, pp. 487–493, 2001.
[52] E. Moore, O. Rawley, T. Wood, P. Galvin , “Monitoring of cell growth in vitro using biochips packaged with indiμm tin oxide sensors,” Sensors and Actuators B , vol.139 , pp. 187–193, 2009.
[53] A. Ivorra, “Bioimpedance monitoring for physiciansan overview. Biomedical Applications Group,” CNM Barcelona, pp. 131-178, 2002
[54] M. L. Lemos “Matlab Based Specific Impedance Spectroscopy Simulator for Suspension of Cells,” 2009.
[55] J. E. B. Randles, “Kinetics of rapid electrode reactions,” 1947.
[56] D. A. Borkholder, “Cell Based Biosensors Using Microelectrodes,” PhD Thesis, Stanford, 1998.
[57] H. P. Schwan, “Electrode polarization Impedance and Measurement in Biological Materials,” Ann. New York Acad. Sci., vol.148(1), pp. 191–209, 1968.
[58] R. W. de Boer, A. van Oosterom, “Electrical properties of platinμm electrodes: Impedance measurements and time-domain analysis,” Med. Biol. Eng. Comput., vol.16, pp. 1–9, 1978.
[59] J. F. DeRosa, R. B. Beard, “Linear AC electrode polarization impedance at smooth noble metal interfaces,” IEEE Transactions on Biomedical Engineering, vol. BME-24, pp. 260–268, 1977.
[60] V. S. Bagotzky, Y. B. Vassilyev, J. Weber, J. N. Pirtskhalava, “Ad-sorption of anions on smooth platinμm electrodes,” Institute of Electrochemistry, U.S.S.R. Academy of Sciences, Moscow (U.S.S.R.), vol. 24, pp. 31–46, 1970.
[61] E. Warburg, “Ueber das verhalten sogenannter unpolarisirbarer elektroden gegen wechselstrom,” Physik & Chemie, vol. 303, pp. 493–499, 1899.
[62] N. Joye, A. Schmid, “An Electrical Model of the Cell-Electrode In-terface for High-density Microelectrode Arrays,” 30th Annual International IEEE EMBS Conference, pp. 559-562, 2008.
[63] D. A. Borkholder, “Cell Based Biosensors Using Microelectrodes,” PhD Thesis, Stanford, 1998.
[64] N. Joye, A. Schmid, Y. Leblebici, “Electrical modeling of the cell–electrode interface for recording neural activity from high-density microelectrode arrays,” Anal Bioanal , Neurocomputing 73, pp. 250–259, 2009.
[65] I. Giaever, C.R. Keese, “Micromotion of mammalian cells measured electrically,” Proceedings of the National Academy of Sciences of the United States of America 88, vol.17, pp. 7896–7900, 1991.
[66] Y. Chen, J. Zhang, Y. Wang, L Zhang, R. Julien, K. Tang, N. Balasubramanian, “Real-time monitoring approach: Assessment of effects of antibodies on the adhesion of NCI-H460 cancer cells to the extracellular matrix, ” Biosensors and Bioelectronics, vol.23, pp. 1390-1396, 2008.
[67] F. Zhang, L. X. Lin, G. W. Wang, R. Hu, C. J. Lin, Y. Chen, “A high-throughput electrochemical impedance spectroscopy evaluation of bioresponsibility of the titaniμm microelectrode array integrated with hydroxyapatite and silver,” Electrochimica Acta, vol.85, pp. 152–161, 2012.
[68] S. Hiromoto, K. Noda, T. Hanawa, “Electrochemical properties of an interface between titaniμm and fibroblasts L929,” Electrochimica Acta, vol.48, pp. 387–396, 2007.
[69] Verify and Optimize your Design with COMSOL Multiphysics, Electrodeposition Module.
[70] Y. W. Lin, G. J. Wang “Measurement of Adhesion of Bovine Endothelial Cells on Different Materials Using Dielectrophoresis,” EDA Publishing DTIP, pp. 25–27, 2012.
[71] R. Pradhan, A. Mitra, S. Das, “Simulation of Three Electrode Device for Bioimpedance Study using COMSOL Multiphysics, Systems in Medicine and Biology, pp. 37-40, 2010.
[72] P. V. Gerwena, W. Laureyna, W. Laureysa, G. Huyberechtsa, M. O. D. Beecka, K. Baerta, J. Sulsb, W. Sansenb, P. Jacobsc, L. Hermansa, R. Mertensa, “Nanoscaled interdigitated electrode arrays for biochemical sensors, ” Sensors and Actuators B: Chemical, pp. 73-80, 1998.
[73] Z. Zou, J. Kai, M. J. Rust, J. Han, C. H. Ahn, “Functionalized nano interdigitated electrodes arrays on polymer with integrated microfluidics for direct bio-affinity sensing using impedimetric measurement, ” Sensors and Actuators A, vol.136, pp. 518-526, 2007.
[74] L. Yang, Y. Li, C. L. Griffis, M. G. Johnson, “Interdigitated microelectrode (IME) impedance sensor for the detection of viable Salmonella typhimuriμm,” Biosensors and Bioelectronics, vol.19, pp. 1139–1147, 2004.
[75] P. Kanchanawong, G. Shtengel, A. M. Pasapera, E. B. Ramko, M. W. Davidson, H. F. Hess, C. M. Waterman, “Nanoscale architecture of integrin-based cell adhesions,” Nature, vol.468, pp. 580–584, 2010.
[76] F.J. O'Brien, B. A. Harley, I. V. Yannas, L. J. Gibson “The effect of pore size on cell adhesion in collagen-GAG scaffolds,” Biomaterials, 2005.
[77] R. Fujimoto, A. Kaneta, K. Okamoto, M. Funato, and Y. Kawakami, “Interference of the surface plasmon polaritons with an Ag waveguide probed by dual-probe scanning near-field optical microscopy,” Kyoto University Research Information Repository, 2012.
[78] C. Giacomantonio, “Charge Transport in Melanin, Disordered Bio-Organic Conductor,” Bachelor of Science with Honours in Biophysics University of Queensland, 2005.
[79] D. Miklavčič, “ELECTRIC PROPERTIES OF TISSUES,” Wiley Encyclopedia of Biomedical Engineering, 2006.
[80] C. G. A. Lima, R. S. de Oliveira, S. D. Figueir´o, C. F. Wehmann, J. C. G´oes, A. S. B. Sombra, “DC conductivity and dielectric permittivity of collagen–chitosan films, ” Materials Chemistry and Physics, vol.99, pp. 284–288, 2006.
[81] E. Fukada, H. Ueda, R. Rinaldi, “PIEZOELECTRIC AND RELATED PROPERTIES OF HYDRATED COLLAGEN,” BIOPHYSICAL JOURNAL, vol.16, 1976.
[82] Z. Zou, J. Kai, M. J. Rust, J. Han, C. H. Ahn, “Functionalized nano interdigitated electrodes arrays on polymer with integrated microfluidics for direct bio-affinity sensing using impedimetric measurement”, Sensors and Actuators, vol. 136, pp. 518-526, 2007.
[83] 林盈瑞,設計一網印電極藉由電阻抗感測偵察細胞行為,國立中央大學電機工程碩士論文,pp.186-188,2012。
[84] P. T. Kissinger, W. R. Heineman, “Cyclic Voltammetry”, Journal of Chemical education, vol. 60, pp. 702-706, 1983.
[85] S. Rana, R. H. Page, C. J. M. Neil, “Impedance spectra analysis to characterize interdigitated electrodes as electrochemical sensors”, Electrochimica Acta, vol. 56, pp. 8559-8563, 2011.
[86] D. Caballero, E. Martinez, J. Bausells, A. Errachid, J. Samitier, “Impedimetric immunosensor for hμman serμm albμmin detection on a direct aldehyde-functionalized silicon nitride surface”, Analytica Chimica Acta, vol. 720, pp. 43-48, 2012.
[87] J. Wegener, C. R. Keese, I. Giaever, “Electric Cell–Substrate Impedance Sensing (ECIS) as a Noninvasive Means to Monitor the Kinetics of Cell Spreading to Artificial Surfaces”, Experimental Cell Research, vol. 259, pp. 158-166, 2000.
[88] J. Wang, C. Wu, N. Hu, J. Zhou, L. Du, P. Wang, “Microfabricated Electrochemical Cell-Based Biosensors for Analysis of Living Cells In Vitro”, Biosensors, vol. 2, pp. 127-170, 2012.
[89] J. H. T. Luong, C. Xiao, B. Lachance, S. M. Leabu, X. Li, S. Uniyal, B. Chan, “Extended applications of electric cell-substrate impedance sensing for assessment of the structure–function of α2β1 integrin”, Analytica Chimica Acta, vol. 501, pp. 61-69, 2004.
[90] A. Bouafsoun, S. Helali, A. Othmane, A. Kerkeni, A. F. Prigent, N. Jaffrézic-Renault, F. Bessueille, D. Léonard, L. Ponsonnet, “Evaluation of Endothelial Cell Adhesion onto Different Protein/Gold Electrodes by EIS”, Macromol. Biosci, vol. 7, pp. 599-610, 2007.
[91] W. A. Goddard III, D. Brenner, S. E. Lyshevski, G. J. Iafrate, “Handbook of Nanoscience, Engineering, and Technology”, ISBN: 978-1-4398-6015-1, pp. 114, 2012.
[92] M. Zahn, Y. Ohki, D. B. Fenneman, R. J. Gripshover, V. H. Gehman, “Dielectric Properties of Water and Water/Ethylene Glycol Mixtures for Use in Pulsed Power System Design”, Proceedings of the IEEE, vol. 74, 1986.