| 研究生: |
呂東翰 Dong-Han Lu |
|---|---|
| 論文名稱: |
通用型陷波濾波器不平衡補償方法應用於磁浮軸承控制器開發 |
| 指導教授: |
董必正
Pi-Cheng Tung |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 136 |
| 中文關鍵詞: | 磁浮軸承 、通用型陷波濾波器 、自動平衡控制 |
| 外文關鍵詞: | maglev bearing, generalized notch filter, auto-balancing control |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近來有關主動式磁浮軸承的研究已被廣泛的應用於現代工業中,由於磁浮技術無接觸的特點,避免物理上的摩擦與磨耗,在諸如工程工業、生物醫學上皆有其應用,例如渦輪發動機[1]、真空泵 [2]、高速主軸[3]等。
旋轉機械的轉子質量不平衡會引起系統劇烈振動,由於轉子偏心所引起的同步振動是磁浮軸承在高速運轉的主要激震源,當轉速到達一定程度時,離心力會使軸承振動量超過氣隙大小,轉子與緊急軸承會產生摩擦碰撞。
本論文旨在開發以數位處理器為基礎的主動式磁浮軸承不平衡補償控制系統,首先,利用電感式位移感測器與PD控制法將磁浮軸承浮起並且運轉,當運轉至某頻率時導入通用型陷波濾波器將該轉速下之不平衡量消除,實現主動式磁浮軸承自動平衡控制。
Recently, research of active magnetic bearings has been widely applied in industry. It’s non-contact characteristic of magnetic levitation technology without physical friction and abrasion. Therefore, active magnetic bearings have been widely implemented, such as engineering industry and biomedical application. For example, turbine engine [1], vacuum pump[2], high-speed spindle[3], and so on.
Rotating mechanical umbalance causes severe system vibration. The synchronous vibration caused by eccentricity of the rotor is the major excitation source, when rotating at high speed. As the operating speed increases to certain speed, the centrifugal force makes the bearing vibrate larger than the size of air gap, the rotor and the emergency bearing will collide with each other.
This paper aims to develop unbalanced compensation of active magnetic bearings base on a digital processor. First, inductive displacement sensors and PD controller are used to levitate the maglev bearing. A generalized notch filter is used to eliminate the synchronous unbalance operating and implement the auto-balancing control of the active magnetic bearing, when the magnetic bearings are operated to certain speed.
[1]E. A. Knoth and J. P. Barber,“Magnetic repulsion bearings for turbine engines,” IEEE Transactions on Magnetics, vol. 24, no. 6, pp. 3141-3143, Nov. 1998.
[2]M. D. Noh, S. R. Cho, J. H. Kyung, S. K. Ro, and J. K. Park,“Design and Implementation of a Fault-Tolerant Magnetic Bearing System for Turbo-Molecular Vacuum Pump,” IEEE Transactions on Mechatronics, vol. 10, no. 6, pp. 626-631, Dec. 2005.
[3]C. R. Knospe,“Active magnetic bearing for machining applications,” Control Engineering Practice, vol. 15, pp. 307-313, Mar. 2007.
[4]G. Schweitzer, E. Maslen,“Magnetic Bearings- Theory, Design and Apply to Rotating Machinery,” Springer, 2009.
[5]Texas Instruments,“TMS320F28335 Datesheet,” 2007.
[6]Texas Instruments, TMS320F28335, TMS320F28334, TMS320F28332, TMS320F28235, MS320F28234, TMS320F28232 Digital Signal Controllers (DSCs) Data Manual, June 2007.
[7]Texas Instruments,“TMS320x2833x, 2823x DSC Serial Peripheral Interface (SPI) Reference Guide ,”2009.
[8]劉陵順,TMS320F28335DSP原理及開發編程,北京航空航天大學出版社,北京,民國100年。
[9]張卿杰,手把手教你學DSP –基於TMS320F28335,北京航空航天大學出版社,北京,民國104年。
[10]ADI,“AD7609 Datesheet,”2017.
[11]Texas Instruments,“SN74LVC4245A Datesheet,”2015.
[12]Texas Instruments,“TLV5614 Datesheet,” 2003.
[13]L. Florian,“Identification and Automated Controller Design for Active Magnetic Bearing Systems,” University of Kaiserslautern, Technische University Kaiserslautern, 2002。
[14]黃昭銘,“參數自我調整控制於非線性磁浮軸承系統之應用”,國立中央大學,碩士論文,民國84年。
[15]R. Herzog, P. Bu ̈hler, C. Ga ̈hler, and R. Larsonneur ,“Unbalance Compensation Using Generalized Notch Filters in the Multivariable Feedback of Magnetic Bearings,”IEEE Transactions on Control Systems Technology, vol. 4, no. 5, pp. 580-586, Sep. 1996.
[16]C. R. Burrows and M. N. Sahinkaya, “Vibration control of multi-mode rotorbearing systems,” In Proceedings of the Royal Society of London (Series A), vol. 386, pp. 77-94, 1983.
[17]A. C. Wroblewski, J. T. Sawicki, and A. H. Pesch, “Rotor Model Updating And Validation for an Active Magnetic Bearing Based High-Speed Machining Spindle, ” Journal of Engineering for Gas Turbines and Power-Transactions of the ASME, vol. 134(12) pp. 122509, Oct. 2012.
[18]蒋科坚、祝长生,“基于不平衡识别的主动电磁轴承转子系统自动平衡”,振动工程学报,vol. 22,no. 6,pp. 559-564,2009。
[19]孙岩桦、罗岷、虞烈,“基于自适应陷波器的电磁轴承不平衡补偿方法”,振动工程学报,vol. 13,No. 4,pp.611-615,2000。
[20]陳兆芸、林宗憲、王登茂、蘇崇賢,“磁浮軸承控制與轉子不平衡抑制探討”,國立勤益科技大學,綠能科技工程與應用研討會,2013。
[21]B. Shafai, S. Beale, P. LaRocca, and E. Cusson, “Magnetic bearing control systems and adaptive force balancing,”IEEE Control Systems, vol. 14, pp. 4-13,Apr. 1994.
[22]J. Shi, R. Zmood, and L. Qin, “Synchronous disturbance attenuation in magnetic bearing systems using adaptive compensating signals,” Control Engineering Practice, vol. 12, pp. 283-290, 2004.
[23]ISO 14839-2, Mechanical vibration—Vibration of rotating machinery equipped with active magnetic bearings—Part2: Evaluation of vibration.
[24]葉品良,“智慧型運動控制器之研發”,國立中央大學,碩士論文,民國104年。
[25]李冠賢,“雙軸馬達同步控制之研究”,國立中央大學,碩士論文,民國104年。