跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張日謙
Jih-Chien Chang
論文名稱: 微液滴驅動之研究與探討
Studies of actuation on micro liquid droplets
指導教授: 楊宗勳
Tsung-Hsun Yang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 94
語文別: 中文
論文頁數: 79
中文關鍵詞: 鐵氟龍介電質電濕式微滴體
外文關鍵詞: micro liquid droplets, EWOD, Teflon
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   傳統上EWOD元件容易發生水解或膜破的缺陷,其原因為過高的電壓操作或是不穩固的疏水層所造成,因此本文提出了三個解決方案:1.採用高介電質材料二氧化鈦或五氧化二鉭做為介電層,以降低操作電壓。2.採用新型疏水材料Cytop?,以得到更穩固的疏水層。3.利用交流電訊號做為驅動電壓來源,透過DEP介電泳效應及表面張力原理的雙重影響,使得液滴在更低的電壓條件下獲得更大的驅動力。透過結構的改進,得到更穩定的EWOD微液滴操控平台。
      另一方面,本文利用虛擬儀控軟體LabVIEW設計人機介面,加上放大電路及操控電路的應用,成功地以全自動的方式來驅動EWOD元件上的滴液,並且透過全自動EWOD微液滴驅動系統做光學方面的應用,利用液滴的來回震盪,將雷射光束於水平軸上偏折至不同的方向,以達到光束掃描的效果。


    This thesis reports three solutions to improve the defects, hydrophobic layer broken and electrolysis occurred easily, of a conventional electrowetting on dielectric (EWOD) Microfluidic system. These defects caused of high voltage applied and the hydrophobic material is not stable. First, the applied voltage could be decreased by using high dielectric material TiO2 or Ta2O5 to be dielectric layer. Second, we used Cytop? to be the new and stable material of hydrophobic layer. Third, we changed the power source from DC voltage into AC, let liquid gets more thrusting power. The microfluidic system is more stable by using these three improved methods.
    By the way, the automatic EWOD Microfluidic system was developed by using graphical development software Labview, voltage amplifier and a relay based circuit. In application, the scanning system which is based on optical refracting theorem was also discussed. The light beam would be refracted into different ways, depending on the harmonic motion of droplet.

    第一章 導論............................................. 1 第二章 微流體的驅動.................................... 10 2.1 表面張力.................................... 10 2.1.1 毛細管電泳............................ 10 2.1.2 連續流電濕式.......................... 12 2.1.3 電濕式................................ 14 2.1.4 介電質電濕示 (EWOD) ................. 15 第三章 元件的設計與製作................................ 21 3.1 研究動機..................................... 21 3.2 高介電值材料於EWOD 元件上之應用........... 22 3.2.1 以鈦氧化物做為介電層.................. 22 3.2.2 以五氧化二鉭做為介電層................ 25 3.3 新型疏水性材料於EWOD 元件上之應用......... 26 3.3.1 Cytop? ................................ 26 3.3.2 製作流程及參數........................ 27 3.4 以ITO 為基底之二維EWOD 元件設計與製造..... 33 3.5 二維陣列式EWOD 元件布線探討............... 37 結論............................................ 39 第四章 測試............................................ 40 4.1 優缺點比較與分析............................ 40 4.2 鈦氧化物為介電層之接觸角量測................ 42 4.3 五氧化二鉭為介電層之接觸角量測.............. 45 4.4 Cytop?測試.................................. 48 4.4.1 以Cytop?為疏水層之接觸角量測.......... 49 4.4.2 Cytop?應用於一維EWOD 元件............. 50 4.5 以ITO 為基底之二維EWOD 元件測試............. 54 4.6 主動式矩陣驅動原理測試...................... 58 第五章 應用............................................ 61 5.1 全自動二維EWOD 微液滴系統................. 61 5.2 光束掃描系統................................ 68 第六章 結論............................................ 71 參考資料....................................................73 附錄....................................................76

    [1] 莊慧明,“生物晶片”,《產業調查與技術》, 141期April, 2002.4.
    [2] 李國賓,“微流體生醫晶片”,《科學發展》, 385期Jan, 2005.
    [3] L. Shi, “DNA Microarray (Genome Chip)”, http://www.gene-chips.com/
    [4] K. K. Jain, “Biochips for Gene Spotting, “Science, Vol 294, Issue 5542, 621-623, 19 October 2001.
    [5] Affymetrix, Gene-chip Technology, http://www.affmetrix.com/technology/index.aff
    [6] Nano Bioelectronics $ Systems Research Center, http://nanobio.snu.ac.kr/eng/reserch_3.html#2
    [7] C. M. Ho, “Fluidics the link between micro and nano sciences and technologies”, in Proc. IEEE Int. Conf. MEMS, Interlaken, Switzerland, pp. 375-384, 2001.
    [8] S. K. Cho, H. Moon, and C. J. Kim, “Creating, transporting, cutting, and merging liquid droplets by electrowetting-base actuation for digital Microfluidic circuits”, Microelectromechanical Systems, Journal of, Vol. 12, No. 1, pp. 70-80, 2003.
    [9] G. T. A. Kovacs, Micromachined Transducers Sourcebook. New York: McGraw-Hill. 9, 1998.
    [10] L. Yobas, and M.A. Huff, and Lisy, F.J. Lisy, and D.M. Durand, “A novel bulk Micromachined electrostatic microvalve with acurved-compliant structure applicable for a pneumatic tactile display” J. Microelectromech. Syst., Vol. 10, pp. 187-196, Jun. 2001.
    [11] S. Shoji, “Microsystem Technology in Chemistry and Life Science”, H. Becker, A. Manz, Eds., Vol. 194, pp. 164-188, 1998.
    [12] J. Lee, H. Moon, J. Fowler, T. Schoellhammer, and C. J. Kim, “Electrowetting and electrowetting-on-dielectric for microscale liquid handling”, Sens. Actuators, Phys. A, Vol. 95, pp. 259-268, 2002.
    [13] P. C. Hiemenz, Principles of Colloid and Surface Chemistry, Marcel Dekker, New York, Ch. 6 and 12, 1986.
    [14] T. K. Jun, and C. J. Kim, “Valueless pumping using traversing vapor bubbles in microchannels,” J. Appl. Phys., Vol. 83, No. 11, pp. 5658-5664, 1998.
    [15] T. A. Sammarco, and M. A. Burns, “Thermocapillary pumping of discrete drops in microfabricated analysis devices,” AIChE J., Vol. 45, No. 2, pp. 350-366, 1999.
    [16] H. Matsumoto, and J. E. Colgate, “Preliminary investigation of micropumping based on electrical control of interfacial tension,” in Proc. IEEE MEMS Workshop, Napa Valley, CA, pp. 105-110, 1990.
    [17] B. Berge, C. R. Acad. Sci. Ser. II, 317, 157, 1993.
    [18] G. Beni, and M. A. Tenan, “Dynamics of electrowetting displays,” J. Appl. Phys., Vol. 52, pp. 6011-6015, 1981.
    [19] J. L. Jackel, S. Hackwood, J. J. Veselka, and G. Beni, “Electrowetting switch for multimode optical fibers”, Appl. Opt. Vol. 22, pp. 1765-1770, 1983.
    [20] G. Beni, and S. Hackwood, “Electro-wetting displays,” Appl. Phys. Lett. Vol. 38, pp. 207-209, 1981.
    [21] J. L. Jackel, S. Hackwood, and G. Beni, “Electrowetting optical switch,” Appl. Phys. Lett., Vol. 40, pp. 4-5, 1982.
    [22] M. Vallet, M. Vallade, and B. Berge, “Limiting phenomena for the spreading of water on polymer films by electrowetting,” Eur. Phys. J. B11, pp. 583-591, 1999.
    [23] J. Lee, and C.J. Kim, “Surface-Tension-Driven Microactuation Based on Continuous Electrowetting,” J. Microelectromech. Syst., Vol. 9, No. 2, pp. 171-180, 2000
    [24] Chen, D.-c.; Chang, S.-S.; Chen, C.-h. Anal. Chem. 1999, 71, 3200.
    [25] 陳德昌,“毛細管電泳雙電極安培偵測法的分離電解質影響偵測靈敏度之研究與應用”博士論文,國立中山大學化學所,2001
    [26] R. M. Guijt, E. Baltussen, G. van der Steen, H. Frank, H. Billiet, T. Schalkhammer, F. Laugere, M. Vellekoop, A. erthold, L. Sarro, van Dedem, G. W. K. Electrophoresis Vol. 22, pp. 2537-2541, 2001
    [27] Harber, C.; Silvstri, I. R., S.; Simon, W. Chimia 1991, 45, 17.
    [28] J. O. M. Bockris, and A. K. N. Reddy, “Modern electrochemistry, Plenum Press,” New York, Ch. 7 and 8, 1970
    [29] N. K. Adam, “The Physics and Chemistry of Surfaces, Oxford University Press,” London, Ch. 1, 8, 9, 1941
    [30] M. G. Lippmann, “Relations entre les ph?nom?nes electriques et capillaires,” Ann. Chim. Phys., Vol. 5, No. 11, pp. 494–549, 1875
    [31] Philips, http://www.research.philips.com/newscenter/archive/2004/fluidlenses. html.
    [32] S. Kuiper, and B. Hendriks, “Liquid Lenses Provide Quality Images for Camera Phones,” SPIE’s oemagazine, January, 2005
    [33] 李正中,“薄膜光學與鍍膜技術”,第四版,藝軒圖書出版公司.
    [34] S. K. Cho, S.-K Fan, H. Moon, and C.-J Kim, “Towards digital microfluidic circuits: creating, transporting, cutting and merging liquid droplets by electrowetting-based actuation,” Proceedings of IEEE International Conference on MEMS, Las Vegas, Nevada, USA, pp. 32-35 Jan. 2002,.
    [35] S.-K. Fan, C. Hashi, and C.-J. Kim, “Manipulation of Multiple Droplets on NxM Grid by Cross-Reference EWOD Driving Scheme and Pressure-Contact Packaging”, IEEE Conf. Micro Electro Mechanical Systems, Kyoto, Japan, pp. 694-697, Jan 2003,.
    [36] E.H. Stupp, and M. S. Brennesholtz, “Projection Displays,” John Wiley & SONS, 1999.
    [37] 林師勤,楊宗勳,“介電電濕式數位微流體驅動系統之探討,”國立中央大學光電所, Jun 2004.
    [38] 丁挺洲,楊宗勳,“以EWOD為基礎的長鏈高分子原位合成器,”國立中央大學光電所, Jun 2005.
    [39] J. M. Lundstrom, T. L. Smith, L. F. Rinehart, R.C. Pate, M.L. Krogh, and W. Huebner, “Measurement of the dielectric strength of titanium dioxide ceramics,” IEEE., Vol. 2, pp. 1489-1491 vol. 2, 1999.
    [40] Y. Nishioka, N. Homma, H. Shinriki, K. Mukai, K. Yamaguchi, A. Uchida, K. Higeta, and K. Ogiue, “Ultra-thin Ta2O5dielectric film for high-speed bipolar memories,” IEEE Transactions on electron devices, Vol. 34, No. 9, Sep 1987
    [41] D. Chatterjee, B. Hetayothin, A. R. Wheeler, D. J. King and R. L. Garrell, ” Droplet-based microfluidics with nonaqueous solvents and solutions” Lab on a Chip, 6, 199-206, 2006.

    QR CODE
    :::