跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳孟哲
Meng-Che Wu
論文名稱: 通過木星陰影時木衛一Io的大氣變化
TimeTime Variability of Io’s atmosphere during its passage of Jupiter’s Shadow
指導教授: 葉永烜
Wing-Huen Ip
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 太空科學與工程學系
Department of Space Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 76
中文關鍵詞: 木衛一大氣熱模型二氧化硫霜
外文關鍵詞: Io’s atmosphere, Eclipse, Thermal model, Sulfur dioxide frost
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 木衛一Io,是木星系統裡最靠近木星的伽利略衛星,它擁有超過 400 座的火山,以及以二氧化硫為主體的稀薄大氣層。在每次環繞木星的公轉,木衛一將會通過木星的陰影形成木衛星蝕,其沒入陰影的時間持續約兩個小時。因此當木衛星蝕發生時,太陽輻射的能量來源將受到限制,木衛一地表溫度預期將會急遽下降,進而導致由熱昇華控制的大氣暫時崩潰,而根據先前的觀測分析,其推論是可能發生的,我們可確定的是木衛星蝕將對木衛一的大氣演變有重要的影響。另一方面,其他的伽利略衛星像是木衛二 Europa 和木衛三 Ganymede,它們具有以磁層離子濺射和水冰的熱昇華產生的外氣層,在通過木星陰影時也會發生類似的瞬變效應。在未來的太空探索中,JUICE 等太空任務預計將詳細研究在木衛星蝕發生時對衛星的大氣結構與形成過程的影響。在本次研究中,我們將呈現在日光下與通過木星陰影區的木衛一的表面溫度分佈,然後討論大氣結構的可能相應物理結果。此外,我們針對木衛一的地表建立一個的地表雙層模型,在二氧化硫霜上覆蓋著非二氧化硫的物質(假設為塵埃層),來研究二氧化硫在氣壓平衡下對地表特性的可能關聯性。


    Io, one of Jupiter's large moons and its atmospheric composition of the atmosphere is mainly sulfur dioxide. It will enter the shadow of Jupiter for rough two hour each orbits. Because of the sudden shut-off of solar radiation, the temperatures on the sunlit surfaces would drop precipitously leading to the temporary collapse of the atmospheres controlled by thermal sublimation. Such effect has important influence of the time variation of the SO₂ atmosphere of Io according to previous astronomical measurements. By the way, similar transient effects would occur for the other Galilean moons, namely, surface-bound exospheres of Europa and Ganymede were generated by magnetospheric ion sputtering and thermal sublimation of water ice. Such a unique phenomenon diagnostic of the atmospheric structure and formation process will be studied in detail by future space missions like JUICE. In this research, we will present the surface temperature profiles of Io in common and in the vicinity of the shadow zone of Jupiter and then discuss the corresponding physical consequences on their respective atmospheric structure. Besides, we examine the dependence of the SO₂ equilibrium pressure on the surface property of Io by introducing a two layer model with a dust mantle overlying the SO₂ frost.

    中文摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vi 表目錄 viii 參考符號 ix 第一章 緒論 1 1.1木星與木星系統 1 1.2 木星磁層與其太空環境 3 1.3 伽利略衛星 6 1.3.1 木衛一 6 1.3.2 木衛二、木衛三與木衛四 10 第二章 木衛一的觀測 12 2.1地面望遠鏡觀測 12 2.2 哈伯太空望遠鏡 15 2.3 太空船觀測 17 2.3.1 先鋒號任務與航海家任務 17 2.3.2 伽利略任務與卡西尼任務 20 2.3.3 新視野號任務與朱諾號任務 22 2.3.4未來太空探測任務 24 2.4 蝕現象的觀測 25 第三章 數值模擬方法 27 3.1 木衛一表面熱模型 27 3.1.1 熱傳導方程式 28 3.1.2 物質蒸氣壓與潛熱 31 3.2 計算方法 33 3.3蝕溫度模型計算 35 3.4 雙層表面溫度模型 37 第四章 結果與討論 38 4.1 木衛一熱模型分析 38 4.2 木衛一:木衛星蝕情況下模擬分析 46 4.3 雙層模型模擬結果分析 49 第五章 結論與延伸工作 53 5.1 結論與展望 53 5.2 延伸工作: 伽利略衛星在木衛星蝕期間的大氣變化 55 參考文獻 57

    期刊論文
    [1]Anderson, J. D., Sjogren, W. L., & Schubert, G. (1996). Galileo Gravity Results and the Internal Structure of Io. Science, 272, 709-712.
    [2]Ashkenazy, Y. (2016). The surface temperature of Europa. Earth and Planetary Astrophysics.
    [3]Ballester, G. E., McGrath, M.A, Strobel, D. F., Zhu, X., Feldman, P. D., & Moos, H.W. (1994). Detection of the SO2 Atmosphere on Io with the Hubble Space Telescope. Icarus, 111, 2-17.
    [4]Barnard, E. E. (1891). Observations of the Planet Jupiter and his Satellites during 1890 with the 12-inch Equatorial of the Lick Observatory. Monthly Notices of the Royal Astronomical Society. 51(9), 543–556.
    [5]Binder, A. B. & Cruikshank, D. P. (1964). Evidence for an atmosphere on Io. Icarus, 3(4), 299-305.
    [6]Bergstrom, F. W. (1921). The Vapor Pressure of Sulfur Dioxide and Ammonia. J. Phys. Chem., 26(4), 358-376.
    [7]Bertaux, J. L. & Belton, M. J. S. (1979). Evidence of SO2 on Io from UV observations. Nature, 282, 813–815.
    [8]Blanc, M., Kallenbach, R. & Erkaev, N. V. (2005). Solar System Magnetospheres. Space Sci. Rev., 116, 227-298.
    [9]Bouchez, A. H., Brown, M. E., & Schneider, N. M. (2000). Eclipse Spectroscopy of Io's Atmosphere. Icarus, 148, 316-319.
    [10]Broadfoot, A. L., Belton, M. J. S., Takacs, P. Z., Sandel, B. R., Shemansky, D.E., Holberg, J. B., Ajello, J.M., Atreya, S.K., Donahue, T.M., Moos, H.W., Bertaux, J.L., Blamont, J. E., Strobel, D.F., McConnell, J.C., Dalgarno, A., Goody, R., & McElroy, M. B. (1979). Extreme ultraviolet observations from voyager 1 encounter with Jupiter. Science, 204, 979-982.
    [11]Burger, M. H. (2006). Io’s Neutral Clouds: From the atmosphere to the plasma torus, Ph.D. thesis, University of Colorado at Boulder.
    [12]Burke, B. F. & Franklin, K. L. (1955). Observations of a variable radio source associated with the planet Jupiter, Journal of Geophysical Research, 60, 213–217.
    [13]Clarke, J. T., Janet, J.A., Schneider. L. N., & Kanik, I. (1994), Hubble Space Telescope UV spectral observations of Io passing into eclipse, Journal of Geophysical Research, 99, 25,8387-8402.
    [14]Connerney, J.E.P., Kotsiaros, S., Oliversen, R. J., Espley, J.R., Joergensen, J. L., Joergensen, P. S., Merayo, J. M. G., Herceg, M., Bloxham, J., Moore, K.M., Bolton, S. J. & Levin, S. M. (2018). A New Model of Jupiter's Magnetic Field from Juno's First Nine Orbits. Geophysical Research Letters, 45, 2590-2596.
    [15]Cowan, J. J., & A'Hearn, M. F. (1979). Vaporization of comet nuclei: Light curves and life times. The moon and the planets, 21(2), 155-171.
    [16]Cruikshank, D. P., & Murphy, R. E. (1973). The post-eclipse brightening of Io, Icarus, 20, 7-17.
    [17]Fanale, F. P., Banerdt, W. B., Elson, L. S., Johnson, T. V., & Zurek, R.W. (1982). Io’s surface-its phase composition and influence on Io’s atmosphere and Jupiter’s magnetosphere, Satellites of Jupiter, The University of Arizona Press, 756–781.
    [18]Feaga, L.M., McGrath, M.A., Feldman, P.D., & Strobel, D.F. (2004). Detection of atomic chlorine in Io's atmosphere with the Hubble Space Telescope GHRS. The Astrophysical Journal, 610, 1191-1198.
    [19]Feldman, P. D., McGrath, M. A., Strobel, D. F., Moos, H. W., Retherford, K. D., & Wolven, B.C. (2000). HST/STIS Ultraviolet Imaging of Polar Aurora on Ganymede. The Astrophysical Journal, 35, 1085-1090.
    [20]Feldman, P. D., Strobel, D. F., Moos, M. W., Retherford, K. D., Wolven, B. C., McGrath, M. A., Roesler, F. L., Woodward, R. C., Oliversen, R. J., & Balleste, G. E. (2000). Lyman‐α imaging of the SO2 distribution on Io. Geophysical Research Letters, 27, 12, 1787-1790.
    [21] Fink, U., Dekkers, N., & Larson, H. (1973). Infrared spectra of the Galilean satellites of Jupiter. The Astrophysical Journal, 179, L155-L159.
    [22] Geissler, P. E., & McMillan, M. T. (2008). Galileo observations of volcanic plumes on Io. Icarus, 197, 505-518.
    [23] Giauque, W. F., & Stephenson, C. C. (1938). Sulfur Dioxide. The Heat Capacity of Solid and Liquid. Vapor Pressure. Heat of Vaporization. The Entropy Values from Thermal and Molecular Data, Contribution from the Chemical Laboratory of the University of California, Journal of the American Chemical Society, 60(6), 1389-1394.
    [24] Graps, A. L., Grün, E., Svedhem, H., Krüger, H., Horányi, M., Heck, A., & Lammers, S. (2000). Io as a source of the jovian dust streams. Nature, 405, 48-50.
    [25] Hall, D. T., Strobel, D. F., Feldman, P. D., McGrath, M. A., & Weaver, H. A. (1995). Detection of an oxygen atmosphere on Jupiter's moon Europa, Nature, 373, 677-679.
    [26] Hansen, O.L., (1973). Ten-micron eclipse observations of Io, Europa, and Ganymede, Icarus, 18, 237-246.
    [27] Hapke, B. (1989). The surface of Io: A new model, Icarus, 79, 56-74.
    [28] Hogeboom, D. L., Kargel, J. S., & Reiter, M.L. (1996). Pressure-Volume-Temperature and Phase Relationships of Sulfur Dioxide, Lunar and Planetary Science, 27, 553.
    [29] Howell, R.R. Cruikshank, D.P. & Fanale, F.P. (1984). Sulfur dioxide on Io: Spatial distribution and physical state, Icarus, 57, 83-92.
    [30] Johnson, R.E., Carlson R. W., Cooper J.F., Paranicas, C., Moore M.H., & Wong, M.C. (2004), Radiation effects on the surfaces of the Galilean satellites, Jupiter: The planet, satellites and magnetosphere, 485-512.
    [31] Kerton, C. R., Fanale F. P., & Salvail, J. R. (1996). The state of SO2 on Io's surface, Journal of Geophysical Research, 101(E3), 7555-7563.
    [32] Kivelson, M. G., Khurana, K. K., Coroniti, F. V., Joy, S. Russell, C. T., Walker, R. J.Warnecke, J. Bennett, L., & Polanskey, C. (1997). The magnetic field and magnetosphere of Ganymede, Geophysical Research Letters, 24, 17, 2155-2158.
    [33] Kivelson, M. G., Khurana, K. K., & Volwerk, M. (2002). The Permanent and Inductive Magnetic Moments of Ganymede. Icarus, 157, 507-522.
    [34] Kliore, A. J., Anabtawi, A., Herrera, R. G., Asmar, S.W., Nagy, A. F., Hinson, D. P., & Flasar, F. M. (2002). Ionosphere of Callisto from Galileo radio occultation observations. Journal of Geophysical Research, 107, SIA 19-1-SIA 19-7.
    [35] Kumar, S. (1979). The stability of an SO2 atmosphere on Io, Nature, 280, 758–760.
    [36] Kumar, S. (1980). A model of the SO2 atmosphere and ionosphere of Io. Geophysical Research Letters, 7, 9-12.
    [37] Kuskov, O.L. & Kronrod, V. A. (2005). Internal structure of Europa and Callisto. Icarus, 177, 550-569.
    [38] Leblanc, F., Oza, A.V. Leclercq, L., Schmidt, C., Cassidy, T., Modolo, R., Chaufray, J. Y., Johnson, R. E. (2017). On the orbital variability of Ganymede's atmosphere. Icarus, 293, 185-198.
    [39] Lanzerotti, L.J. & Brown, W. L. (1983). Supply of SO2 for the atmosphere of Io. Journal of Geophysical Research, 88, 989-990.
    [40] Lebofsky, L. A., (1975). Stability of frosts in the solar system, Icarus, 25, 205-217.
    [41] Lee, T. (1972). Spectral albedos of the Galilean satellites. Comm. Lunar Planet. Lab., 9, 179-180.
    [42] Lellouch, E., McGrath, M. A., & Jessup, K. (2007). Io’s atmosphere, Io after Galileo: A New View of Jupiter’s Volcanic Moon, 231-264.
    [43] Lopes, R.M.C., Kamp, L.W., Smythe, W. D. Mouginis-Mark, P., Kargel, J., Radebaugh, J., Turtle, E.P., Perry, J., Williams, D.A., Carlson, R.W., & Doute, S. (2004). Lava lakes on Io: observations of Io's volcanic activity from Galileo NIMS during the 2001 fly-bys. Icarus, 169, 140-174.
    [44] Matson, D. L. & Nash, D. B., (1983). Io's atmosphere: Pressure control by regolith cold trapping and surface venting, Journal of Geophysical Research, 88, 4771-4783.
    [45] McComas, D.J., Alexander, N., Allegrini, F., Bagenal, F., Beebe, C., Beebe, C., Clark, G., Crary, F., Desai, M. I., De Los Santos, A., Demkee, D., Dickinson, J., Everett, D., Finley, T., Gribanova, A., Hill, R., Johnson, J., Kofoed, C., Loeffler, C., Louarn, P., Maple, M., Mills, W., Pollock, C., Reno, M., Rodriguez, B., Rouzaud, J., Santos-Costa, D., Valek, P., Weidner, S., Wilson, P., Wilson, R. J., &White, D. (2017). The Jovian Auroral Distributions Experiment (JADE) on the Juno Mission to Jupiter. Space Science Reviews, 213,547-643.
    [46] McEwen, A. S., Keszthelyi, L., Spencer, J. R., Schubert, G., Matson, D. L., Lopes-Gautier, R., Klaasen, K. P., Johnson, T. V., Head, J. W., Geissler, P., Fagents, S., Davies, A. G., Carr, M. H., Breneman, H. H., & Belton, M.J. (1998), High-temperature silicate volcanism on Jupiter's moon Io. Science, 281, 87-90.
    [47] McEwen, A. S., Turtle, E., Hibbard, K., Reynolds, E. & Adams, E. (2014). Io Volcano Observer (IVO): Budget travel to the outer Solar System. Acta Astronautica, 93, 539-544.
    [48] Moore, C. H., Goldstein, D. B., Varghese, P. L., Trafton, L. M., & Stewart, B. (2009).
    1-D DSMC simulation of Io's atmospheric collapse and reformation during and after eclipse, Icarus, 201, 585-597.
    [49] Moore, C. H., Goldstein, D. B., Varghese, P. L., Trafton, L. M., Stewart, B. D., &Walker, A. C., (2009). Io's atmospheric freeze-out dynamics in the presence of a non-condensable species. AIP Conference Proceedings 1084, 1079.
    [50] Moreno, M. A., Schubert, G., Baumgardner, J., Kivelson, M.G., &Paige, D.A., (1991). Io's volcanic and sublimation atmospheres, Icarus, 93, 63-81.
    [51] Moullet, A., Gurwell, M.A., Lellouch, E., & Moreno, R. (2010). Simultaneous mapping of SO2, SO, NaCl in Io’s atmosphere with the Submillimeter Array, Icarus, 208, 353-365.
    [52] Nelson, R. M., Lane, A. L., Matson, D. L., Fanale, F. P., Nash, D. B., & Johnson, T. V., (1980). Io: Longitudinal distribution of sulfur dioxide frost, Science, 210, 784-786.
    [53] Noll, K. S., Johnson. R. E., Lane, A. L., Domingue, D. L., & Weaver, H. A. (1996). Science, 273, 341-343.
    [54] Peale, S. J., Cassen, P., & Reynolds, R. T. (1979). Melting of Io by Tidal Dissipation, Science, 203, 892-894.
    [55] Porco, C. C., West, R. A., McEwen, A., Del Genio, A.D., Ingersoll, A. P., Thomas, P., Squyres, S., Dones, L., Murray, C. D., Johnson, T. V., Burns, J. A., Brahic, A., Neukum, G., Veverka, J., Barbara, J. M., Denk, T., Evans, M., Ferrier, J. J., Geissler, P., Helfenstein, P., Roatsch, T., Throop, H., Tiscareno, M., & Vasavada, A. R. (2003). Cassini imaging of Jupiter's atmosphere, satellites, and rings. Science, 299, 1541-1547.
    [56] Retherford, K. D., Spencer, J. R., Stern, S. A., Saur, J., Strobel, D. F., Steffl, A. J., Gladstone, G. R., Weaver, H. A., Cheng, A. F., Parker, J. Wm. Slater, D. C., Versteeg, M. H., Davis, M. W., Bagenal, F., Throop, H. B., Lopes, R. M. C., Reuter, D. C., Lunsford, A., Conard, S. J., Young, L. A., & Moore, J. M. (2007),Io's Atmospheric Response to Eclipse: UV Aurorae Observations, Science, 318, 237-240.
    [57] Roesler, F.L., Moos, H.W., Oliversen, R.J., Woodward, R.C. Jr, Retherford, K.D., Scherb, F., McGrath, M.A., Smyth, W.H., Feldman, P.D., & Strobe, D.F. (1999). Far-ultraviolet imaging spectroscopy of Io's atmosphere with HST/STIS. Science, 283, 353-357.
    [58] Roth, L., Retherford, K. D., Saur, J., Strobel, D. F., Feldman, P. D., McGrath, M.A., & Nimmo, F. (2014). Orbital apocenter is not a sufficient condition for HST/STIS detection of Europa's water vapor aurora. PNAS, 48, E5123-E5132.
    [59] Roth, L., Saur, J., Retherford, K.D., Strobel, D. F., Feldman, P.D., McGrath, M.A., Spencer, J. R., Blöcker, A., & Ivchenko, N. (2016). Europa's far ultraviolet oxygen aurora from a comprehensive set of HST observations. Journal of Geophysical Research, 121(3), 2143-2170.
    [60] Russell, C. T., & Dougherty, M. K. (2010). Magnetic Fields of the Outer Planets. Space Sci. Rev., 152, 251-269.
    [61] Scarf, F. L., Kurth, W. S., Gurnett, D. A., Bridge, H. S., & Sullivan, J. D. (1981). Jupiter tail phenomena upstream from Saturn, Nature, 292, 585.
    [62] Schneider, N. M., Hunten, D. M., Wells, W. K., & Trafton, L. (1987). M. Eclipse Measurements of Io's Sodium Atmosphere. Science, 238, 55-58.
    [63] Schneider, N. M., & Trauger, J. T. (1995). The Structure of the Io Torus. The Astrophysical Journal, 450, 450-462.
    [64] Simonelli, D. P., Dodd, C., & Veverka, L. (2001), Regolith variations on Io: Implications for bolometric albedos, J. Geophys. Res., 106, 33241-33252.
    [65] Sinton, W. M., & Kaminski, C. (1988). Infrared observations of eclipses of Io, its thermophysical parameters, and the thermal radiation of the Loki volcano and environs, Icarus, 75, 2, 207-232.
    [66] Smith, B.A., Soderblom, L.A., Johnson, T.V., Ingersoll, A.P., Collins, S.A., Shoemaker, E.M., Hunt, G.E., Masursky, H., Carr, M.H., Davies, M.E., Cook, A.F. II, Boyce, J., Danielson, G.E., Owen, T., Sagan C., Beebe, R.F., Veverka, J., Strom, R.G., McCauley, J.F., Morrison, D., Briggs, G.A., & Suomi, V.E. (1979). The Jupiter system through the eyes of Voyager 1. Science, 204, 951-972.
    [67] Showman, A. P., & Malhotra R. (1999). The Galilean satellites, Science, 286, 77-84.
    [68] Silverberg, P. M., & Wenzel, L. A. (1965). Variation of latent heat with temperature, J. Chem. Eng. Data, 10, 4, 363-366.
    [69] Simonelli, D. P., & Veverka, J. (1988). Bolometric albedos and diurnal temperatures of the brightest regions on Io, Icarus, 74, 2, 240-261.
    [70] Sparks, W. B., McGrath, M. A., Hand, K. P., Spencer, J. R., Cracraft, M., Bergeron, E., & Deustua, S. E. (2016). Probing for evidence of plumes on europa with HST/STIS, The Astrophysical Journal, 829.
    [71] Spencer, J. R., Lebofsky, L. A., & Sykes, M. V. (1989). Systematic biases in radiometric diameter determinations, Icarus, 78, 2, 337-354.
    [72] Spencer, J. R., Sartoretti, P., Ballester, G. E., McEwen, J.T., Clarke, J.T., & McGrath, M.A. (1997). The Pele Plume (Io): Observations with the Hubble Space Telescope. Geophysical Research Letters, 24(20), 2471-2474.
    [73] Spencer, J. R., Stern, S. A., Cheng, A. F., Weaver, H. A., Reuter, D. C., Retherford, K., Lunsford, A., Moore, J. M., Abramov, O., Lopes, R. M. C., Perry, J. E., Kamp, L., Showalter, M., Jessup, K. L., Marchis, F., Schenk, P. M., & Dumas. C. (2007). Io Volcanism Seen by New Horizons: A Major Eruption of the Tvashtar Volcano. Science, 318, 240-243.
    [74] Spohn, T. & Schubert, G. (2003). Oceans in the icy Galilean satellites of Jupiter? Icarus, 161, 2, 456-467.
    [75] Thomas, N., Bagenal, F., Hill, T. W., & Wilson, J. K. (2004). The Io Neutral Clouds and Plasma Torus., Jupiter: The planet, satellites and magnetosphere. 561-591.
    [76] Trafton, L. M., Moore, C.H. Goldstein, D.B., Varghese, P. L., & McGrath, M.A. (2012). HST/STIS observations and simulation of Io’s emission spectrum in Jupiter shadow: Probing Io’s Jupiter-facing eclipse atmosphere, Icarus, 220, 1121-1140.
    [77] Trumbo, S. K., Brown, M. E., & Hand, K. P. (2019). Sodium chloride on the surface of Europa, Science Advances, 5.
    [78] Tsang, C. C. C., Spencer, J. R., Lellouch, E., Lopez-Valverde, M.A., Richter, M. J., & Greathouse, T. K. (2012). “Io’s Atmosphere: Constraints on Sublimation Support from Density Variations on Seasonal Timescales using NASA IRTF/TEXES Observations from 2001 to 2010”. Icarus, 217, 277-296
    [79] Tsang, C. C. C., Spencer J. R., Lellouch, E., Richter M. J., Lopez-Valverde M. A., & Greathouse, T. K., Roe, H. (2013). “Io’s Contacting Atmosphere Post-Perihelion: Further Evidence for Partial Sublimation Support on the Anti-Jupiter Hemisphere”. Icarus, 226, 1179-1183.
    [80] Tsang, C. C. C., Spencer, J. R., & Jessup, K. L. (2015). “Non-Detection of Post-Eclipse Changes in Io’s Jupiter Facing Hemisphere: Evidence for Volcanic Support?” . Icarus, 248, 243-253.
    [81] Tsang, C. C. C., Spencer, J. R., Lellouch E., Lopez-Valverde, M. A., & Richter, M. J. (2016). The collapse of Io's primary atmosphere in Jupiter eclipse. Journal of Geophysical Research, 121, 8, 1400-1410.
    [82] Veverka, J., Simonelli, D., Thomas, P., Morrison, D., & Johnson, T.V. (1981). Voyager search for Post-eclipse brightening on Io. Icarus, 47, 60-74.
    [83] Walker, A.C., Moore, C. H., Goldstein, D. B.,Varghese, P. L.,& Trafton, L.M. (2012). A parametric study of Io’s thermophysical surface properties and subsequent numerical atmospheric simulations based on the best fit parameters. Icarus, 220, 225-253.
    [84] Wagman, D. D. (1979). Sublimation pressure and enthalpy of SO2. Chem. Thermodyna-mics Data Center, Nat. Bur. of Standards, Washington, DC.
    [85] Westfall, J. E. (2005). Timing the eclipses of Jupiter's Galilean satellites.
    書籍
    [1]. Atreya, S. K. (1986). Atmospheres and Ionospheres of the Outer Planets and Their Satellites, Physics and Chemistry in Space 15, Physics and Chemistry in Space. Springer-Verlag Berlin Heidelberg.
    [2]. Bagenal, F., Dowling, T. E., & McKinnon, W. B. (2004). Jupiter: The Planet, Satellites and Magnetosphere, Cambridge University Press.
    [3]. Fernandez, J. A. (2006). Icy Bodies of the Solar System (IAU S263).
    [4]. Hall III, J. A. (2016). Moons of the Solar System from Giant Ganymede to Dainty Dactyl, Astronomers' Universe. Springer International Publishing.
    網頁
    [1]. Io Volcano Observer (IVO)
    https://www.lpi.usra.edu/opag/march09/presentations/10Ivo.pdf

    QR CODE
    :::