| 研究生: |
陳漢興 Han-Xing Chen |
|---|---|
| 論文名稱: |
條件生成對抗網路於鋼筋混凝土柱遲滯迴圈預測之開發與應用 Development and Application of Conditional Generative Adversarial Networks for Predicting Hysteretic Loops of Reinforced Concrete Columns |
| 指導教授: |
陳鵬宇
Peng-Yu Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 212 |
| 中文關鍵詞: | 鋼筋混凝土柱 、遲滯迴圈 、物理條件 、條件生成對抗網路 |
| 外文關鍵詞: | Reinforced concrete columns, Hysteretic loops, Physical conditions, Conditional Generative Adversarial Networks |
| 相關次數: | 點閱:25 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
臺灣位於環太平洋地震帶上,受到板塊擠壓作用的影響導致地震頻繁,常有致災型地震發生。鋼筋混凝土(Reinforced Concrete,RC)建築是台灣主要的建築結構材料,其受震反應是一重要的研究課題,尤其是在反覆載重下RC柱能否有效地發揮其韌性,是房屋耐震能力的重要指標。為了解RC柱的遲滯行為,一般多採用反覆載重分析。然而反覆載重若採實驗所需的成本高、採用數值分析則多有數值不穩定的問題需要反覆的進行參數校正。為了更有效地了解RC柱的遲滯反應,本研究提出一種基於深度學習技術的條件生成對抗網路(Conditional Generative Adversarial Networks,CGAN)來預測不同設計條件下的RC柱遲滯迴圈。本研究共蒐集257組RC柱反覆載重試驗之數據,並分別訓練CGAN、CDCGAN、CWGAN-GP三種不同的條件生成對抗網路模型對不同破壞型式控制的試體進行預測,用以探討最適用之模型。研究結果顯示使用CWGAN-GP有最好的IoU(Intersection Over Union)。此外,本研究探討2種數值型標籤之物理條件所生成之遲滯迴圈,結果顯示採用10種設計RC柱設計參數較僅採用1種剪力強度比做為條件所生成的遲滯迴圈有較高的IoU及迴圈力學表現,因此本研究根據此結果,期望在未來能夠提供有需求的民眾或結構工程師一種快速且低成本的分析方法,使其無須進行反覆載重試驗,便能獲得準確遲滯迴圈。
Taiwan is located on the Pacific Ring of Fire, which results in frequent earthquakes and sometimes loss of life. Reinforced Concrete (RC) building is the most widely used building type in Taiwan. The behavior of RC columns under seismic loads is hence critical, especially their seismic capacity and energy dissipation performance. Cyclic loading tests are commonly used to understand the hysteretic behavior of RC columns. However, experimental test is costly, and numerical analysis, on the other hand, is easy to suffer from numerical instability issues and hence requires repeatedly calibration of parameters. To address it, this study proposes a deep learning technique based on the conditional Generative Adversarial Networks (CGAN) to predict the hysteretic behavior of RC columns. This study collects experimental data from 257 cyclic loading tests on RC columns. Three different conditional generative adversarial network models—CGAN, CDCGAN, and CWGAN-GP—are investigated to identify the optimal model for predicting the hysteretic loops with various failure modes. The result shows that CWGAN-GP has the highest IoU (Intersection Over Union) and hence is recommended. On the other hand, Different conditions are also assessed to optimize the prediction performance, and the result reveals that the general RC design parameters are more suitable than a single shear strength ratio. Based on these results, this study hopes to provide a rapid and low-cost analysis method for the public and structural engineers in the future. This method would allow them to obtain accurate hysteresis loop analysis without the need for repetitive load testing.
[1] Inel, M., & Ozmen, H. B. (2006). Effects of plastic hinge properties in nonlinear analysis of reinforced concrete buildings. Engineering structures, 28(11), 1494-1502.
[2] Bruschi, E., Calvi, P. M., & Quaglini, V. (2021). Concentrated plasticity modelling of RC frames in time-history analyses. Engineering Structures, 243, 112716.
[3] Scott, M. H., & Fenves, G. L. (2006). Plastic hinge integration methods for force-based beam–column elements. Journal of Structural Engineering, 132(2), 244-252.
[4] Haselton, C. B., Liel, A. B., Taylor-Lange, S. C., & Deierlein, G. G. (2016). Calibration of model to simulate response of reinforced concrete beam-columns to collapse. ACI Structural Journal, 113(6).
[5] Haselton, C. B., & Pacific Earthquake Engineering Research Center. (2008). Beam-column element model calibrated for predicting flexural response leading to global collapse of RC frame buildings. Pacific Earthquake Engineering Research Center.
[6] Sezen, H., & Moehle, J. P. (2004). Shear strength model for lightly reinforced concrete columns. Journal of structural engineering, 130(11), 1692-1703.
[7] Elwood, K. J., & Moehle, J. P. (2005). Drift capacity of reinforced concrete columns with light transverse reinforcement. Earthquake Spectra, 21(1), 71-89.
[8] Filippou, F. C., Popov, E. P., & Bertero, V. V. (1983). Effects of bond deterioration on hysteretic behavior of reinforced concrete joints.
[9] Yassin, M. H. M. (1994). Nonlinear analysis of prestressed concrete structures under monotonic and cyclic loads. University of California, Berkeley.
[10] Luo, H., & Paal, S. G. (2018). Machine learning–based backbone curve model of reinforced concrete columns subjected to cyclic loading reversals. Journal of Computing in Civil Engineering, 32(5), 04018042.
[11] Liu, Z., & Li, S. (2019). Development of an ANN-based lumped plasticity model of RC columns using historical pseudo-static cyclic test data. Applied Sciences, 9(20), 4263.
[12] Huang, C., Li, Y., Gu, Q., & Liu, J. (2022). Machine learning–based hysteretic lateral force-displacement models of reinforced concrete columns. Journal of Structural Engineering, 148(3), 04021291.
[13] Gao, Y., & Mosalam, K. M. (2018). Deep transfer learning for image‐based structural damage recognition. Computer‐Aided Civil and Infrastructure Engineering, 33(9), 748-768.
[14] Alipour, M., Harris, D. K., & Miller, G. R. (2019). Robust pixel-level crack detection using deep fully convolutional neural networks. Journal of Computing in Civil Engineering, 33(6), 04019040.
[15] Srivastava, S., Vargas-Munoz, J. E., & Tuia, D. (2019). Understanding urban landuse from the above and ground perspectives: A deep learning, multimodal solution. Remote sensing of environment, 228, 129-143.
[16] Chen, P. Y., & Guan, X. (2023). A multi-source data-driven approach for evaluating the seismic response of non-ductile reinforced concrete moment frames. Engineering Structures, 278, 115452.
[17] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y. (2014). Generative adversarial nets. Advances in neural information processing systems, 27.
[18] Mirza, M., & Osindero, S. (2014). Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784.
[19] Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434.
[20] Arjovsky, M., Chintala, S., & Bottou, L. (2017, July). Wasserstein generative adversarial networks. In International conference on machine learning (pp. 214-223). PMLR.
[21] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., & Courville, A. C. (2017). Improved training of wasserstein gans. Advances in neural information processing systems, 30.
[22] 郭俊锋, 王淼生, 孙磊, & 续德锋. (2022). 基于生成对抗网络的滚动轴承不平衡数据集故障诊断新方法. 计算机集成制造系统, 28(9), 2825.
[23] Zheng, M., Li, T., Zhu, R., Tang, Y., Tang, M., Lin, L., & Ma, Z. (2020). Conditional Wasserstein generative adversarial network-gradient penalty-based approach to alleviating imbalanced data classification. Information Sciences, 512, 1009-1023.
[24] Liao, W., Lu, X., Huang, Y., Zheng, Z., & Lin, Y. (2021). Automated structural design of shear wall residential buildings using generative adversarial networks. Automation in Construction, 132, 103931.
[25] Wu, T. Y., Wu, R. T., Wang, P. H., Lin, T. K., & Chang, K. C. (2023). Development of a high-fidelity failure prediction system for reinforced concrete bridge columns using generative adversarial networks. Engineering Structures, 286, 116130.
[26] Huang, S. K., Chao, W. T., & Lin, Y. X. (2024). Conditional generation of artificial earthquake waveforms based on adversarial networks. Soil Dynamics and Earthquake Engineering, 180, 108622.
[27] Berry, M., Parrish, M., & Eberhard, M. (2004). PEER structural performance database user’s manual (version 1.0). University of California, Berkeley.
[28] 陳瑩瑄(2012)。鋼筋混凝土柱受撓曲變形參數之研究。〔碩士論文。國立中央大學〕。
[29] 游雅喬(2012)。鋼筋混凝土柱之極限破壞研究。〔碩士論文。國立臺北科技大學〕。
[30] 黃冠傑(2013)。鋼筋混凝土柱耐震圍束之研究。〔碩士論文。國立臺灣大學〕。
[31] 王禹琁(2013)。RC柱性能曲線分析模型之驗證與改進。〔碩士論文。國立成功大學〕。
[32] 吳秉誠(2017)。典型鋼筋混凝土柱構件震後性能研究。〔碩士論文。國立臺灣科技大學〕。
[33] 張宗豪(2021)。高軸力下高強度鋼筋混凝土柱撓曲主控之側力位移曲線。〔碩士論文。國立中興大學〕。
[34] McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5, 115-133.
[35] Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and organization in the brain. Psychological review, 65(6), 386.
[36] LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324..
[37] Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
[38] 李坤展(2023)。數據驅動之鋼筋混凝土構架機率式地震風險評估。〔碩士論文。國立中央大學〕。
[39] ACI Committee. (2005). Building code requirements for structural concrete (ACI 318-05) and commentary (ACI 318R-05). American Concrete Institute.