| 研究生: |
蕭榮憶 Jung-Yi Hsiao |
|---|---|
| 論文名稱: |
以毛細管電泳法分離位置及對掌異構物之方法開法與應用 Application of caplillary electrophoresis to separate positional isomers and enantiomers |
| 指導教授: |
丁望賢
Wang-Hsien Ding |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 熱力學參數 、位置異構物 、主-客錯合物 、結合常數 、環糊精 、毛細管電泳 、除草劑 、鹽析 、對掌異構物 、氯化苯氧基酸 |
| 外文關鍵詞: | chlorophenoxy aicds, enantiomers, apparent binding constants, host-guest complex, naphthalenesulfonates, positional isomers, thermodynamic parameters, salting-out, herbicides, capillary electrophoresis, cyclodextrins |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
異構物(isomers)係指擁有相同分子式之不同化合物,其中取代基排列位置不同者稱為位置異構物(positional isomer),互為鏡像但不可重疊的立體異構物則為對掌異構物(enantiomer)。此二種異構物之間因分子量及帶電量相近或相同,無法利用毛細管區帶電泳法分離。本研究在緩衝溶液內添加對掌選擇劑(chiral selector),使其與分析物錯合形成主客錯合物,產生視電泳遷移率之差異而達到分離之效果。
本研究的主要目標之ㄧ為利用毛細管電泳法分離?磺酸鹽位置異構物,並探討其與環糊精之間的作用關係,進而計算其結合常數與熱力學參數,以了解其分離機制。經由視電泳遷移率與對掌選擇劑(β-CD)濃度之關係,以非線性方程式及三種線性方程式所估算出之結合常數與文獻值比較,證實毛細管電泳法確為一便利且準確之結合常數計算方法。在資料數充分之條件下,四種估算結合常數之方程式中以非線性方程式所得之結果最為準確。實驗結果並顯示位置異構物取代基之種類、位置及數量會對錯合行為造成影響,當β位置上接有取代基時因立體障礙較小,結合常數較大,若取代基在α位置上則反之。此外,藉由不同溫度下結合常數之變化,可計算出主-客分子錯合作用時之熱力學參數變化。經由實驗結果得知?磺酸鹽與β-CD之錯合作用為自發性反應,且在溫度越低時趨勢越強。
本研究的第二目標即在建立一套方法,利用毛細管電泳法分離並檢測在水環境中的氯化苯氧基酸對掌異構物,並搭配前處理步驟以達到濃縮及去除基質干擾的目的。結果顯示,使用添加15 mM HP-β-CD的50 mM醋酸鹽緩衝溶液,施加25 kV的正向電壓所得到之分離效果最好。
一般毛細管電泳儀最常撘配UV偵檢器,其偵測極限都較高。因此,在真實水環境樣品的檢測上都須經過濃縮的步驟,以增加樣品的濃度。本研究所採用的萃取方法為固相萃取法,經由此方法可將樣品濃縮至少2000倍以上,並可去除部份基質干擾。但毛細管電泳法受離子的干擾影響很大,因此在進樣前必須增加一去鹽的步驟─鹽析,再次降低基質干擾。本研究所使用的鹽析條件為2 mL的水樣添加0.45 g NaOH,以1 mL的ACN進行萃取。經由搭配Oasis? HLB固相萃取管柱及鹽析的方法,當針對含有2.5 μg/L分析物之100 mL水樣進行回收率的探討,在最佳條件下各分析物之回收率均高於68%,相對標準偏差在13%以下,顯示本方法具有良好的回收率與再現性。
Capillary electrophoresis (CE) is one of the most popular analytical techniques in separation of positional/structural isomers and chiral compounds, and also can be used to evaluate the binding constants and thermodynamic parameters of guest-host inclusion complex. The first part of this study is application of CE to simultaneously determine the apparent binding constants and thermodynamic parameters for six positional/structural naphthalene sulfonate derivatives with ?-cyclo- dextrin (?-CD). The change in electrophoretic mobilities were used to assess the binding constants by nonlinear regression and three different linear plots methods (named double reciprocal, x-reciprocal and y- reciprocal). The substituent group(s) attached to the naphthalene ring considerably affected the inclusion behaviors of these naphthalene sulfonate derivatives. The binding constant varies over almost one order of magnitude and a highly selective sequence is obtained between these guest model compounds. Naphthalenesulfonates with the substituent(s) at the 2-position(s) displayed stronger interaction with ?-CD, and gave well compatible results by these four plot methods. While at least one substituent was substituted into the 1-position of naphthalene showed the weak interaction or no interaction with ?-CD. Comparison to three linear regression methods, the non-linear regression method proves to be the most suitable for these determinations. Additionally, apparent binding constants for each structural isomer with ?-CD at several temperature, and thermodynamic parameters for binding were also calculated and discussed.
The second part of this study is application of CE to separate two groups of chiral chlorinated pesticides (dichloroprop and mecoprop) in water samples with (2-hydroxypropyl)-?-cyclodextrin (HP-?-CD). The most effective separation conditions were to use 50 mM ammonium acetate with 15 mM HP-?-CD at pH 4.6. Determination of the apparent binding constants and thermodynamic parameters for these two chiral pesticides were also calculated. The use of solid-phase extraction (SPE) and salting-out effect for the off-line preconcentration of chiral pesticides is demonstrated in this study. Oasis HLB-SPE cartridge was used to reduce interferences and enhance the extraction of analytes from surface water samples. The most effective salting-out effect was 0.45 g NaOH and 1.0 mL acetonitrile in 2-mL of SPE extract. Significantly sensitive improvement was observed and more than 2000-fold enrichment was achieved. Recovery of the analytes in various spiked water samples was up to 68% with RSD less than 13%.
1. Ali, Imran and ABoul-Enein, H. Y., Chiral pollutants: Distribution,
toxicity and analysis by chromatography electrophoresis, 2003, 302-315.
2. Ali, Imran, Gupta, V. K. and ABoul-Enein, H. Y., Chiral resolution of some
environmental pollutants by capillary electrophoresis, Electrophoresis,
2003, 24, 1360-1374.
3. Baggiani, C., Giovannoli, C., Anfossi, L. and Tozzi, C., Molecularly
imprinted solid=phase extraction sorbent for the clean-up of chlorinated
phenoxyacids form aqueous samples, J. Chromatogr. A, 1997, 781, 151–160.
4. Bellini, M. S., Deyl, Zdenek, Manetto, G. and Kohl?čkov?, M., Determination
of apparent binding constents of drugs by capillary electrophoresis using β-
cyclodextrin as ligand and three different linear plotting methods, J.
Chromatogr. A, 2001, 924, 483–491.
5. Bowser, M. T. and Chen, D. D. Y., Monte carlo simulation of error
propagation in the determination of binding constants from rectangular
hyperbolae. 1. Ligand concentration range and binding constant, J. Phys.
Chem. A, 1998, 102, 8063-8071.
6. Bowser, M. T. and Chen, D. D. Y., Monte carlo simulation of error
propagation in the determination of binding constants from rectangular
hyperbolae. 2. effect of the maximum-response range, J. Phys. Chem. A,
1999, 103, 197-202.
7. Bowser, M. T., Kranack, A. R. and Chen, D. D. Y., Properties of
multivariate binding isotherms in capillary electrophoresis, Anal. Chem.,
1998, 70, 1076-1084.
8. Britz-McKibbin, P. and Chen, D. D. Y., Accurately describing weak analyte-
additive interaction by capillary electrophoresis, Electrophoresis, 2002,
23, 880-888.
9. Catena, G. c. and Bright, F. V., Thermodynamic study on the effect of β-
cyclodextrirn inclusion with anilinonaphthalenesulfonates, Anal. Chem.,
1989, 61,905-909.
10.Chen, M. H. and Ding, W. H., Separation and migration behavior and
positional and structural naphthalenesulfonate isomers by cyclodextrin-
mediated capillary electrophoresis, J. Chromatogr. A, 2004, 1033, 167-172.
11.Culha, M., Fox, S. and Sepaniak, M., Selectivity in capillary
electrochromatography using native and single isomer anionic cyclodextrin
reagents, Anal. Chem., 2000, 72, 88-95.
12.Eash, D. T. and Bushway R. J., Herbicide and plant growth regulator
analysis by capillary electrophoresis, J. Chromatogr. A, 2000, 880, 281-294.
13.Farran, A. and Ruiz S., Application of solid-phase extraction and micellar
electrokinetic capillary chromatography to the study of hydrolytic and
photolytic degradation of phenoxy acid and phenylurea herbicides, J.
Chromatogr. A, 2004, 1024, 267-274.
14.Fund, Ying-Sing and Mak, J. L. L., Determination if pesticides in drinking
water by micellar electrokinetic capillary chromatography, Electophoresis,
2001, 22, 2260-2269.
15.Grover, P. K. and Ryall, R. L., Critical appraisal of salting-out and its
implications for chemical and biological sciences, Chemical Reviews, 2005,
105, 1-10.
16.Guillaume, Y. C. and Peyrin, E., Symmetry breaking during the formation of
β-cyclodextrin-imidazole inclusion compounds: capillary electrophoresis
study, Anal. Chem., 1999, 71, 2046-2052.
17.Guo, M., Zhang, S., Song, F., Wang, D., Lin, Z. and Liu, S., Studies on the
non-covalent complexes between oleanolic acid and cyclodextrins using
electrospray ionization tandem mass spectrometry, J. Am. Soc. Mass
Spectrom., 2003, 38, 723-731.
18.Hamai, S. and Sakurai H., 2H2O effect on the inclusional complexation of ?-
cyclodextrin with sodium 2-naphthalenesulfonate in capillary
electrophoresis and UV spectrophotometry, J. Chromatogr. A, 1998, 800, 327-
332.
19.Han, L. M., Wang, H., Gu, J. and Fu, R., Capillary electrophoresis
enantioseparation of drugs using ?-cyclodextrin polymer: Intra -molecular
synergistic effect, Electrophoresis, 1999, 20, 1900-1903
20.Harrison, I., Williams, G. M., and Carlick, C. A., Enantioselective
biodegradation of mecoprop in aerobic and anaerobic microcosms,
Chemosphere, 2003, 53, 539-549.
21.Hsieh, You-Zung and Huang, His-Ya, Analysis of chlorophenoxy acid
herbicides by cyclodextrin-modified capillary electrophoresis, J.
Chromatogr. A, 1996, 745, 217–223.
22.Hoekstra, P. F., Burnison, B. K., Neheli, T. and Muir, D. C.G., Enatiomer-
specific activity of o,p’-DDT eith the himan estrogen receptor, Toxicology
Letters, 2001, 125, 75-81.
23.Inoue, Y., Hakushi, T., Liu, T., Tong, Lin-Hui, Shen, Bao-Jian and Jin, Dao-
Sen, Thernodynamics of molecular recognition by cyclodextrins. 1.
Calorimetric titrationif inclusion complexation of naphthalene- sulfonates
with α-, β-, γ-cyclodextrins: enthalpy-entropy compensation, J. Am. Chem.
Soc., 1993, 115, 475-481.
24.Jarman, J. L., Jones, W. J., Howell, L. A. and Garrison, A. W., Application
of capillary electrophoresis to study the enantioselective transformation
of five chiral pesticides in aerobic soil slurries, J. Agric. Food
Chem.,2005, 53, 6175-6182.
25.Jorgenson., J.W., Lukacs, K.D., High-resolution separation based on
electrophoresis and electroosmosis, J. Chromatogr., 1981, 218, 209-216.
26.Kohlarush, F., ?ber Concentration-verschiebungen durch elektrolyse im
innerenvon l?sungsgemischen, Ann. Phys. Chem., 1987, 62, 209-239.
27.Ludwig, P., Gunkel, W. and H?hnerfuss, H., Chromatographic separation of
the enantiomers of marine pollutants. Part 5: Enantioselective degradation
of phenoxycarboxylic acid herbicides by marine microorganisms, Chemosphere,
1992, 24, 1423-1429.
28.Martin-Biosca, Y., Garcia-Ruiz, C. and Marina, M. L., Fast enantiomeric of
uniconazole and diniconazole by electrokinetic chromatography using an
anionic cyclodextrin: Application to the determination of analyte-selector
apparent binding constants for enantiomers, Electrophoresis, 2000, 21, 3240-
3248.
29.Masque?, N., Marc?, R. M., and Borrull, F., New polymeric and other types
of sorbentsfor solid-phase extraction of polar organic micropollutants from
environmental water, Trends in analytical chemistry, 1998, 17, 384-394.
30.Matkovich, C. E. and Christian, G. D., Salting-out of acetone from water-
nasis of a new solvent extraction system, Anal. Chem., 1973, 45, 1915-1921.
31.McDevit, W. F. amd Long, F. A., The activity coefficient if benzene in
aqueous salt solutions, J. Am. Chem. Soc., 1952, 74, 1773–1777.
32.Merino, C., Junquera, E., Jimenez-Barbero, J. and Aicart, E., Effect of the
presence of ?-cyclodextrin on the solution behavior of procaine
hydrochloride. spectroscopic and thermodynamic studies, Langmuir, 2000, 16,
1557-1565..
33.M?ller, M.D. and Buser, H. R., Conversion reactions of various
phenoxyalkanoic acid herbicides in soil. 1. enantiomerization and
enantioselective degradation of the chiral 2-phenoxypropionic acid
herbicides, Environ. Sci. Technol., 1997, 31, 1953-1959.
34.Nagaosa, Y., Salting-out of polar solvent from aqueous solution and its
application to ion-pair extractions, Analytical Chimica Acta, 1980, 120,
279-287.
35.Otsuka, K., Smith, C. J., Grainger, J., Barr, J. R., Patterson, D. G. Jr.,
Tanaka, N. and Terabe, S., Stereoselctive separation and detection of
phenoxy acid herbicide enantiomers by cyclodextrin-modified capillary zone
electrophoresis-electrospray ionization mass spectrometry, J. Chromatogr.
A, 1998, 817, 75-81.
36.Parkin, J. E., Salting-out solvent extraction for pre-concentration of
benzalkonium chloride prior to high-performance liquid chromatography, J.
Chromatogr., 1993, 635. 75-81.
37.Penn, S. G., Bergstrom, E. T. and Goodall D. M., Capillary electrophoresis
with chiral Selectors: Optimization of separation and determination of
thermodynamic parameters for binding of tioconazole enantiomers to
cyclodextrins, Anal. Chem., 1994, 66, 2866-2873.
38.Penn, S. G., He, F., Green, M. K. and Lebrilla, C. B., The use of heated
capillary dissociation and collision-induced dissociation to determmine the
strength of noncovalent bonding interactions in gas-phase peptide-
cyclodextrin complexes, J. Am. Soc. Mass Spectrom., 1997, 8, 244-252.
39.Polcaro, C. M., Marra, C., Desiderio, C. and Fanali, Salvatore,
Stereoselctive analysis of acid herbicides in natural waters by capillary
electrophoresis, Electrophoresis, 1999, 20, 2420-2424.
40.Reigart, R. and Roberts, J., Recognition and management of pesticide
poisonings, U.S. EPA,5th ed, p 94-95, 1999.
41.Reitzel, L. A., Tuxen, N., Ledin, A., and Bjerg, P. L., Can degradation
products be used as documentation for natural attenuation of phenoxy acids
in groundwater? Environ. Sci. Technol., 2004, 38, 457-467.
42.Rizzi, A., Fundamental aspects of chiral separations by capillary
electrophoresis, Electrophoresis, 2001, 22, 3079-3106
43.Rundlett, K. L. and Armstrong, D. W., Examination of the origin, variation,
and proper use if expressions for the estimation of association constents
by capillary electrophoresis, J. Chromatogr. A, 1996, 721, 173–186.
44.Rundlett, K. L. and Armstrong, D. W., Method for the determination of
binding constants by capillary electrophoresis, Electrophoresis, 2001, 22,
1419–1427.
45.R?gge, K., Juhler, R. K., Broholm, M. M., and Bjerg, P. L., Degradation if
the (R)- and (S)-enantiomers of the herbicides MCPP and dichlorprop in a
continuous field-injection experiment, Water Research, 2002, 36, 4160-4164.
46.Salvador, A., Varesio., Dreux, M. and Veuthey, Jean-Luc, Binding constant
depedency of amphetamines with various commercial methelated β-
cyclodextrins, Electrophoresis, 1999, 20, 2670-2679.
47.Sainz-Rozas, P. R., Isasi, J. R., Sanchez, M., Tardajos, G. and Gonzalez-
Gaitano, G., Effects of natural cyclodextrins on the photophysical
properties of dibenzofuran-2-carboxylic acid, J. Phys. Chem. A 2004, 108,
392-402
48.Schneiderheinze, J. M., Armstrong, D. W. and Berthod, A., Plant and soil
enantioselective biodegradation of racemic phenoxyalkanoic herbicides,
Chirality, 1999, 11, 330-337.
49.So, Terence. S. K. and Huie, C. W., Salting-out solvent extraction for the
off-line proconcentration of benxalkonium chloride in capillary
electrophoresis, Electrophoresis, 2001, 22, 2143-2149.
50.Tamaki, T., Kokubu, T. and Ichimura, K., Regioselective and stereo -
selective photodimerization of anthracene-derivatives included
cyclodextrin, Tetrahedron 1987, 43, 1485-1494.
51.Tanaka, Y. and Terabe, S., Enantiomer separation of acidic racemates by
capillary electrophoresis using cationic and amphoteric beta -cyclodextrins
as chiral selectors, J. Chromatogr. A 1997, 781, 151–160.
52.Thorstensen, C. W. and Christiansen, A., Determination if bentazone,
dichlorprop, and MCPA in different soils by sodium hydroxide extraction in
combination with solid-phase preconcentration, J. Agric. Food Chem., 2001,
49, 4199-4202.
53.Tor?ng, L., Nyholm, N. and Albrechtsen, Hans-J?Rgen, Shift in biodegration
kinetics of the herbicides Mcpp and 2, 4-D at low concentration in aerobic
aquifer materials, Environ. Sci. Technol., 2003, 37, 3095-3103.
54.Williams, G. M., Harrison, I., Carlick, C. A. and Crowley, O., Changes in
enantiomeric fraction as evidence of natural attenuation of mecoprop in a
limestone aquifer , Journal of Contaminant Hydrology, 2003, 64, 253-267.
55.Wren, S. A. C. and Rowe, R. C., Theoretical aspects of chiral separation in
capillary electrophoresis, J. Chromatogr. A., 1992, 603, 235-241.
56.Wren, S. A. C., Mobility measurement on dansylated amino acid, J.
Chromatorgr. A, 1997, 768, 153-159.
57.Yolanda, Mart?n-Biosca, Carmen, Garc?a-Ruiz and Maria, L. M., Enantiomeric
separation of chiral phenoxy acid herbicides bu electrokinetic
chromatography. Application to the determination of analyte-selector
apparent binding constants for enantiomers, Electrophoresis, 2001, 22, 3216-
3225.
58.Zerbinati, O., Trotta, F., Giovannoli C., Baggiani C., Giraudi G. and Vanni
A., New derivatives of cyclodextrins as chiral selectors for the capillary
electrophoretic separation of dichlorprop enantiomers., J Chromatogr. A,
1998, 810, 193–200.
59.Zerbinati, O., Trotta, F. and Giovannoli C., Optimization of the
cyclodextrin-assisted capillary electrophoresis separation of the
enantiomers of phenoxyacid herbicides, J Chromatogr. A, 2000, 875, 423–430.