| 研究生: |
洪瑋成 Wei-Cheng Hung |
|---|---|
| 論文名稱: |
應用蟻群演算法求解3D列印之適應式切層 Applying ant colony optimization to adaptive slicing for rapid prototyping |
| 指導教授: |
王啟泰
Chi-Tai Wang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業管理研究所 Graduate Institute of Industrial Management |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 52 |
| 中文關鍵詞: | 快速成型 、蟻群演算法 、適應式切層 |
| 外文關鍵詞: | Rapid Prototyping, Ant Colony Optimization, Adaptive Slicing |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來自造者的概念不斷水漲船高,3D列印也跟著聲勢看漲。在業界,因為列印的效率低落,使得3D列印仍然停留在初期模型驗證與產品測試的階段,無法達到大量製造的規模,所以若能在不影響3D列印硬體技術下的情況下,提升軟體上的前處理,則可以以最小成本提升列印效率;在學術界,提出了許多優化模型切層的演算法,求解方式仍有需多困難,許多相關研究領域的學者認為此問題仍有相當大的發展空間。
適應式切層(Adaptive Slicing)的問題為一混合整數規劃問題,針對混合整數規劃問題已經有很多的學者利用啟發式演算法對這類問題進行求解,像是蟻群演算法等。本研究採用Wang於2014年提出的適應式切層模型為基礎,發展蟻群演算法來求解此模型。本研究為了提升軟體應用上的效率,提出適應式切層求解之方法,目的在於快速求解切層問題,提升3D列印使用者的體驗與效率。
In recent years, the concept of maker constantly rising, 3D printing also followed the momentum bullish. In the industry, because the efficiency of 3D printing is low, it remains in the initial model validation and product testing stage. Achieving mass production still has a long way to go. Therefore, if we can improve the software on the pre-treatment under the circumstance of not affecting the 3D print hardware, you can maximize the printing efficiency with very low cost; in academics, a lot of thesis of slicing optimization have be proposed. However, solving the problem in model slicing still faces challenges. Many scholars in this field think that the problem is still considerable.
Adaptive slicing is a mixed-integer programming problem. For mixed-integer programming problems, many scholars have utilized heuristic algorithms to solve such problems, such as ant colony optimization. Based on the mathematical model of adaptive slicing problem, which proposed by Wang in 2014. We develop an ant colony algorithm to solve the problem. In order to decrease the degree of uncomfortable experience for 3D printing user, a fast algorithm for adaptive slicing problem is necessary.
[1] Chakraborty, L. and Choudhury, A. R. “A semi-analytic approach for direct slicing of free form surfaces for layered manufacturing”, Rapid Prototyping Journal, Vol. 13, Iss. 4, pp. 256-264, 2007.
[2] Colorni, A., Dorigo, M., Maniezzo, V., Elettronica, D. D. and Milano, P. D. “Distributed optimization by ant colonies”, Proceedings of the first European conference on artificial life, Vol. 142, pp. 134-142, 1991.
[3] Crump, S. S. and Minn, M. “Apparatus and method for creating three-dimensional objects”, U.S. Patent 5 121 329, Jun 9, 1992.
[4] DeSimone, J. M., Tumbleston, J. R., Shrivanyants, D., Ermoshkin N., Janusziewicz, R., Johnson, A. R., Kelly, D., Chen, K., Pinschmidt R., Rolland, J. P., Ermoshkin, A. and Samulski, E. T. “Continuous liquid interface production of 3D objects”, Science, Vol. 347, pp. 1349-1352, 2015.
[5] Dolenc, A. and Mäkelä, I. “Slicing procedures for layered manufacturing techniques”, Computer-Aided Design. Vol. 26, Iss. 2, pp. 119-126, 1994.
[6] Dorigo, M., Maniezzo, V. and Colorni, A. “The ant system optimization by a colony of cooperating agents”, IEEE Transactions on Systems. Vol. 26, No. 1, pp. 1-13, 1996.
[7] Dorigo, M. and Gambardella, L. M. “Ant colony system: a cooperative learning approach to the traveling salesman problem”, IEEE Transactions on Evolutionary Computation. Vol. 1, No. 1, pp. 53-66, 1997.
[8] Hayasi, M. T. and Asiabanpour, B. “A new adaptive slicing approach for the fully dense freeform fabrication(FDFF)process”, Journal of Intelligent Manufacturing, Vol. 24, Iss. 4, pp. 683-694, 2013.
[9] Hull, C. W. and Calif, Arcadia. “Apparatus for production of three-dimensional objects by stereolithography”, U.S. Patent 4 575 330, Mar 11, 1986.
[10] Kirkpatrick, S., Gelatt, C. D. and Vecchi, M. P. “Optimization by simulated annealing”, Science, Vol. 220, No. 4598, pp. 671-680, 1983.
[11] Kirschman, C. F. and Jara-Almonte, C. C. “A parallel slicing algorithm for solid freeform fabrication process”, Solid Freeform Fabrication Symposium, pp. 26-33, 1992.
[12] Lee, C. H., Varshney, A. and Jacobs, D. W. “Mesh saliency”, ACM Transactions on Graphics, Vol. 24, Iss. 3, pp. 659-666, 2005.
[13] Ma, W., But, W. and He, P. “Nurbs-based adaptive slicing for efficient rapid prototyping”, Computer-Aided Design, Vol. 36, Iss. 5, pp. 1309-1325, 2004.
[14] Mani, K., Kulkarni, P. and Dutta, D. “Region-based adaptive slicing”, Computer-Aided Design, Vol. 31, Iss. 5, pp. 317-333, 1999.
[15] Massachusetts Institute of Technology. “Three-dimensional printing techniques”, U.S. Patent 5 204 055, Apr 20, 1993.
[16] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N. and Teller, A. H. “Equation of state calculations by fast computer machine”, The Journal of Chemical Physics, Vol. 21, No. 6, pp. 1087-1092, 1985.
[17] Mullar, S. M. and Meher, R. S. “Optimizing of robot gripper configurations using ant colony optimization”, International Journal of Engineering Research & Technology, Vol. 2, Iss. 9, pp. 2655-2662, 2013.
[18] Pandey, P. M., Reddy, N. V. and Dhande, S. G. “Slicing procedures in layered manufacturing a review”, Rapid Prototyping Journal, Vol. 9, No. 5, pp. 274-288, 2003.
[19] Rai, P. and Dutta, M. “Image edge detection using modified ant colony optimization algorithm based on weighted heuristics”, International Journal of Computer Applications, Vol. 68, No. 15, pp. 5-9, 2013.
[20] Reshamwala, A. and Vinchurkar, D. P. “Robot path planning using an ant colony optimization approach”, International Journal of Advanced Research in Artificial Intelligence, Vol. 2, No. 3, pp. 65-71, 2013.
[21] Sabourin, E., Houser, S. A. and Bohn, J. H. “Adaptive slicing using stepwise uniform refinement”, Rapid Prototyping Journal, Vol. 2, No. 4, pp. 20-26, 1996.
[22] Sama, M., Pellegrini, P., D’Ariano, A., Rodriguez, J. and Pacciarelli, D. “Ant colony optimization for the real-time train routing selection problem”, Transportation Research Part B: Methodological, Vol. 85, pp. 89-108, 2016.
[23] Schülter, M., Egea, J. A. and Banga, J. R. “Extended ant colony optimization for non-convex mixed integer nonlinear programming”, Computer & Operations Research, Vol. 36, Iss. 7, pp. 2217-2229, 2009.
[24] Song, R., Liu, Y., Martin, R. and Rosin, P. “Mesh saliency via spectral processing”, ACM Transactions on Graphics, Vol. 33, Iss. 1, pp. 1-17, 2014
[25] Starly, B., Lau, A., Sun, W., Lau, W. and Bradbury, T. “Direct slicing of step based nurbs models for layered manufacturing”, Computer-Aided Design, Vol. 37, Iss. 4, pp. 387-397, 2005.
[26] Stützle, T. and Hoos, H. H. “Max-min ant system”, Future Generation Computer Systems, Vol. 16, Iss. 9, pp. 889-914, 2000.
[27] Tata, K., Fadel, G., Bagchi, A. and Aziz, N. “Efficient slicing for layered manufacturing”, The Rapid Prototyping Journal, Vol. 4, Iss. 4, pp. 152-167, 1998.
[28] The University of Texas System. “Method and apparatus for producing parts by selective sintering”, U.S. Patent 4 863 538, Sep 5, 1989.
[29] Tyber, J. and Bøhn, J. H. “Local adaptive slicing”, Rapid Prototyping Journal, Vol. 4, No. 3, pp. 118-127, 1998.
[30] Wang, W., Chao, H., Yang, Z., Tong, X., Li, H. and Liu, L. “Saliency‐preserving slicing optimization for effective 3D printing”, Computer Graphics Forum, Vol. 33, No. 5, pp. 1-12, 2014.
[31] Yang, P. and Qian, X. “Adaptive slicing of moving least squares surfaces- toward direct manufacturing of point set surfaces”, Journal of Computing and Information Science in Engineering, Vol. 8, Iss. 3, pp. 1-13, 2008.
[32] Zeng, L., Lai, L. M., Qi, D., Lai, Y. and Yuen, M. M. “Efficient slicing procedure based on adaptive layer depth normal image”, Computer-Aided Design, Vol. 43, Iss. 12, pp. 1577-1586, 2011.
[33] Zhang, J. and Liou, F. “Adaptive slicing for a multi-Axis laser aided manufacturing process”, The Journal of Chemical Physics, Vol. 126, Iss. 2, pp. 254-261, 2004.
[34] Zhang, Z. and Joshi, S. “An improved slicing algorithm with efficient contour construction using STL files”, The International Journal of Advanced Manufacturing Technology, Vol. 80, Iss. 5, pp. 1347-1362, 2015.
[35] Zhao, Z. and Laperrière, L. “Adaptive direct slicing of the solid model for rapid prototyping”, The Rapid Prototyping Journal, Vol. 38, Iss. 1, pp. 69-83, 2000.
[36] Zhou, M. Y., Xi, J. T. and Yan, J. Q. “Adaptive direct slicing with non- uniform cusp heights for rapid prototyping”, The International Journal of Advanced Manufacturing Technology, Vol. 23, Iss. 1, pp. 20-27, 2004.