跳到主要內容

簡易檢索 / 詳目顯示

研究生: 孫至輝
Chih-Hui Sun
論文名稱: 以 TOE 與 TPB 探討零售業採用無人商店技術 意圖之研究
The drivers motivate shop owner to adopt Unmanned Store based on TOE and TPB
指導教授: 許秉瑜
Ping-Yu Hsu
口試委員:
學位類別: 碩士
Master
系所名稱: 管理學院 - 企業管理學系
Department of Business Administration
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 69
中文關鍵詞: 智慧技術無人商店計畫行為理論TOE框架行為意圖
外文關鍵詞: Smart retail technology, Smart store, Theory of Planned behavior, TOE framework, Behavior intention
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技的蓬勃發展與消費模式的改變,智慧科技也慢慢進入零售業的生態鏈,使得全球零售業都勢必面臨改變,也推動實體零售商及智慧技術的整合。然而,在新零售領域的研究,大多探討消費者的購物行為與顧客對新零售技術的滿意度及接受度,卻很少有學者在研究零售商採用新技術的行為意圖。本研究目的是以 TOE 框架探討哪些關鍵因素會影響零售企業願意採用無人商店智慧技術進而成立無人商店。因此,本研究運用計畫行為理論(TPB)和科技-組織-環境(TOE)框架為基礎,建構出本研究模型,共包含九個構面及八條假設,研究對象為正要採用無人商店智慧技術之零售商,共收集了 127 份有效問卷來檢驗假設,透過結構方程模型(PLS-SEM)來驗證構面之間的關係,本研究提出計畫行為理論和 TOE 框架整合的研究理論與模型,可供實務上零售企業將採用新技術時的借鏡,並對學術也提供零售領域的參考。


    With the development of technology and the change of consumer behaviors, smart technology has entered the retail ecosystem. While the global retail industry faces these changes, traditional retailers are compelled to implement smart retail technology. Although most of previous studies on smart store technologies focused mainly on consumer shopping behavior and customer satisfaction and acceptance of new retail technologies, few examined investigation into the behavioral intentions of retailers to adopt new technologies. The purpose of this study is to explore the key factors that influence retailers’ intention to implement smart retail technologies and establish unmanned stores. Therefore, based on the theory of planned behavior (TPB) and technology-organization-environment framework (TOE), the study develops a research model including 10 constructs and 9 hypotheses. The respondents are traditional retailers which tend to implement smart retail technologies, thus, we cooperated with Jian24 distribute questionnaires to the respondents in China. A total of 127 valid questionnaires were collected to test the hypothesis using structural equation model (PLS). This study integrates TPB and TOE framework to develop a new research model. The results can offer practical suggestions for retailers to implement smart retail technologies, as well as provide an academic contribution to the research areas.

    摘要 i Abstract ii 圖目錄 v 表目錄 vi 第一章 緒論 1 1-1 研究背景與動機 1 1-2 研究目的 2 1-3 研究架構 3 第二章 文獻探討 5 2-1 無人商店 (Unmanned Store) 5 2-2 TOE框架 6 2-3 計畫行為理論 (TPB) 8 第三章 研究假設與模型 12 3-1 研究假設 12 第四章 研究方法 20 4-1 量測模型 20 4-2 問卷蒐集與分析方法 23 第五章 研究結果 26 5-1 敘述性統計分析 26 5-2 測量模型 29 5-3 結構模型 35 第六章 討論 37 6-1 學術貢獻 38 6-2 實務意涵 39 第七章 結論與建議 40 7-1 結論 40 7-2 研究限制與未來建議 40 參考文獻 42 附錄 53

    〔1〕 Inman, J. J., & Nikolova, H. (2017). Shopper-facing retail technology: A retailer
    adoption decision framework incorporating shopper attitudes and privacy
    concerns. Journal of retailing, 93(1), 7-28.
    〔2〕 Roy, S. K., Shekhar, V., Lassar, W. M., & Chen, T. (2018). Customer engagement
    behaviors: The role of service convenience, fairness and quality. Journal of Retailing and
    Consumer Services, 44, 293-304.
    〔3〕 Pantano, E., & Naccarato, G. (2010). Entertainment in retailing: The influences of
    advanced technologies. Journal of Retailing and Consumer Services, 17(3), 200-204.
    〔4〕 Renko, S., & Druzijanic, M. (2014). Perceived usefulness of innovative technology
    in retailing: Consumers ׳ and retailers׳ point of view. Journal of retailing and consumer
    services, 21(5), 836-843.
    〔5〕 Gartner, 2020. Forecast: Enterprise IT Spending for the Retail Market, Worldwide,
    2018-2024, 1Q20Update. https://www.gartner.com/en/documents/3984885/forecastenterprise-it-spending-for-the-retail-market-wo. (Accessed 16 Feb 2022).
    〔6〕 Grand View Research, (2018). Smart Retail Market Growth & Trends.
    https://www.grandviewresearch.com/press-release/global-smart-retailmarket#:~:text=Smart%20Retail%20Market%20Growth%20%26%20Trends%20The%20
    global,a%20CAGR%20of%2023.9%25%20during%20the%20forecast%20period.
    (Accessed 20 Jan 2023).
    〔7〕 Hoffman, D. L., & Novak, T. (2015). Emergent experience and the connected
    consumer in the smart home assemblage and the internet of things. Available at SSRN
    2648786.
    43
    〔8〕 Wünderlich, N. V., Wangenheim, F. V., & Bitner, M. J. (2013). High tech and high
    touch: a framework for understanding user attitudes and behaviors related to smart
    interactive services. Journal of Service Research, 16(1), 3-20.
    〔9〕 Pantano, E., & Viassone, M. (2014). Demand pull and technology push perspective
    in technology-based innovations for the points of sale: The retailers evaluation. Journal of
    Retailing and Consumer Services, 21(1), 43-47.
    〔10〕 Evanschitzky, H., Iyer, G. R., Pillai, K. G., Kenning, P., & Schütte, R. (2015).
    Consumer trial, continuous use, and economic benefits of a retail service innovation: The
    case of the personal shopping assistant. Journal of Product Innovation Management, 32(3),
    459-475.
    〔11〕 Roy, S. K., Shekhar, V., Quazi, A., & Quaddus, M. (2020). Consumer engagement
    behaviors: do service convenience and organizational characteristics matter?. Journal of
    Service Theory and Practice.
    〔12〕 Grewal, D., Hulland, J., Kopalle, P. K., & Karahanna, E. (2020). The future of
    technology and marketing: A multidisciplinary perspective. Journal of the Academy of
    Marketing Science, 48(1), 1-8.
    〔13〕 Pantano, E., & Timmermans, H. (2014). What is smart for retailing?. Procedia
    Environmental Sciences, 22, 101-107.
    〔14〕 Chen, S. C., & Shang, S. S. (2021). Sustaining User Experience in a Smart System in
    the Retail Industry. Sustainability, 13(9), 5090.
    〔15〕 Bradford, M., Earp, J. B., & Grabski, S. (2014). Centralized end-to-end identity and
    access management and ERP systems: A multi-case analysis using the Technology
    Organization Environment framework. International Journal of Accounting Information
    Systems, 15(2), 149-165.
    44
    〔16〕 Zheng, X., Lu, Y., Le, Y., Li, Y., & Fang, J. (2018). Formation of interorganizational
    relational behavior in megaprojects: Perspective of the extended theory of planned behavior.
    Journal of Management in Engineering, 34(1), 04017052.
    〔17〕 Gavetti, G., Greve, H. R., Levinthal, D. A., & Ocasio, W. (2012). The behavioral
    theory of the firm: Assessment and prospects. Academy of Management Annals, 6(1), 1-40.
    〔18〕 Pantano, E., & Priporas, C. V. (2016). The effect of mobile retailing on consumers'
    purchasing experiences: A dynamic perspective. Computers in human behavior, 61, 548-
    555.
    〔19〕 Bassano, C., Piciocchi, P., & Pietronudo, M. C. (2018). Managing value co-creation
    in consumer service systems within smart retail settings. Journal of Retailing and
    Consumer Services, 45, 190-197.
    〔20〕 Bradlow, E. T., Gangwar, M., Kopalle, P., & Voleti, S. (2017). The role of big data
    and predictive analytics in retailing. Journal of Retailing, 93(1), 79-95.
    〔21〕 Pantano, E., & Servidio, R. (2012). Modeling innovative points of sales through
    virtual and immersive technologies. Journal of Retailing and Consumer Services, 19(3),
    279-286.
    〔22〕 Adapa, S., Fazal-e-Hasan, S. M., Makam, S. B., Azeem, M. M., & Mortimer, G.
    (2020). Examining the antecedents and consequences of perceived shopping value through
    smart retail technology. Journal of Retailing and Consumer Services, 52, 101901.
    〔23〕 Kim, Y. (2021). Revitalization of Offline Fashion Stores: Exploring Strategies to
    Improve the Smart Retailing Experience by Applying Mobile
    Technology. Sustainability, 13(6), 3434.
    45
    〔24〕 Scholz, J., & Duffy, K. (2018). We ARe at home: How augmented reality reshapes
    mobile marketing and consumer-brand relationships. Journal of Retailing and Consumer
    Services, 44, 11-23.
    〔25〕 Dacko, S. G. (2017). Enabling smart retail settings via mobile augmented reality
    shopping apps. Technological Forecasting and Social Change, 124, 243-256.
    〔26〕 Li, R., Song, T., Capurso, N., Yu, J., Couture, J., & Cheng, X. (2017). IoT applications
    on secure smart shopping system. IEEE Internet of Things Journal, 4(6), 1945-1954.
    〔27〕 Mukherjee, A., Smith, R. J., & Turri, A. M. (2018). The smartness paradox: the
    moderating effect of brand quality reputation on consumers' reactions to RFID-based smart
    fitting rooms. Journal of Business Research, 92, 290-299.
    〔28〕 Tornatzky, L. G., & Fleischer, M. (1990). The processes of technological innovation.
    Lexington, MA: Lexington Books.
    〔29〕 Rogers, E. M. (1995). Diffusion of Innovations: modifications of a model for
    telecommunications. Die diffusion von innovationen in der telekommunikation, 25-38.
    〔30〕 Baker, J. (2012). The technology–organization–environment framework. Information
    systems theory, 231-245.
    〔31〕 Kuan, K. K., & Chau, P. Y. (2001). A perception-based model for EDI adoption in
    small businesses using a technology–organization–environment framework. Information &
    management, 38(8), 507-521.
    〔32〕 Pan, M. J., & Jang, W. Y. (2008). Determinants of the adoption of enterprise resource
    planning within the technology-organization-environment framework: Taiwan's
    communications industry. Journal of Computer information systems, 48(3), 94-102.
    〔33〕 Lian, J.W., Yen, D.C. and Wang, Y.T. (2014), “An exploratory study to understand
    46
    the critical factors affecting the decision to adopt cloud computing in Taiwan hospital”,
    International Journal of Information Management, Vol. 34 No. 1, pp. 28-36.
    〔34〕 Ghobakhloo, M., Arias‐Aranda, D., & Benitez‐Amado, J. (2011). Adoption of e‐
    commerce applications in SMEs. Industrial Management & Data Systems.
    〔35〕 Ajzen, I. (1991). The theory of planned behavior. Organizational behavior and
    human decision processes, 50(2), 179-211.
    〔36〕 Fishbein, M., & Ajzen, I. (1977). Belief, attitude, intention, and behavior: An
    introduction to theory and research. Philosophy and Rhetoric, 10(2).
    〔37〕 Bandura, A. (1977). Self-efficacy: toward a unifying theory of behavioral
    change. Psychological review, 84(2), 191.
    〔38〕 Mishra, D., Akman, I., & Mishra, A. (2014). Theory of reasoned action application
    for green information technology acceptance. Computers in human behavior, 36, 29-40.
    〔39〕 Trafimow, D. (2009). The theory of reasoned action: A case study of falsification in
    psychology. Theory & Psychology, 19(4), 501-518.
    〔40〕 Chatzisarantis, N. L., Hagger, M. S., & Brickell, T. (2008). Using the construct of
    perceived autonomy support to understand social influence within the theory of planned
    behavior. Psychology of Sport and Exercise, 9(1), 27-44.
    〔41〕 Lu, H., & Lin, J. C. C. (2002). Predicting customer behavior in the market-space: a
    study of Rayport and Sviokla’s framework. Information & Management, 40(1), 1-10.
    〔42〕 Dodor, J. B. K., & Rana, D. S. (2009). Investigating business schools' intentions about
    offering e‐commerce education using an extended theory of planned behavior. Decision
    Sciences Journal of Innovative Education, 7(1), 195-220.
    47
    〔43〕 Veronese, D., & Kensler, L. (2013). School leaders, sustainability and green school
    practices: An elicitation study using the theory of planned behavior. Journal of
    Sustainability Education, 4(1), 1-21.
    〔44〕 Souitaris, V., Zerbinati, S., & Al-Laham, A. (2007). Do entrepreneurship
    programmes raise entrepreneurial intention of science and engineering students? The effect
    of learning, inspiration and resources. Journal of Business venturing, 22(4), 566-591.
    〔45〕 Miranda, F. J., Chamorro-Mera, A., & Rubio, S. (2017). Academic entrepreneurship
    in Spanish universities: An analysis of the determinants of entrepreneurial
    intention. European research on management and business economics, 23(2), 113-122.
    〔46〕 Khalifa, M., & Shen, K. N. (2008). Drivers for transactional B2C m-commerce
    adoption: Extended theory of planned behavior. Journal of Computer Information
    Systems, 48(3), 111-117.
    〔47〕 Nanath, K., & Pillai, R. R. (2021). Individual and organizational factors affecting the
    implementation of Green IT: a case study of an Indian business school. The Electronic
    Journal of Information Systems in Developing Countries, 87(3), e12163.
    〔48〕 Awa, H. O., Ojiabo, O. U., & Emecheta, B. C. (2015). Integrating TAM, TPB and
    TOE frameworks and expanding their characteristic constructs for e-commerce adoption by
    SMEs. Journal of Science & Technology Policy Management, 6(1), 76-94.
    〔49〕 Agarwal, R., & Prasad, J. (1998). The antecedents and consequents of user
    perceptions in information technology adoption. Decision support systems, 22(1), 15-29.
    〔50〕 Premkumar, G., & Roberts, M. (1999). Adoption of new information technologies in
    rural small businesses. Omega, 27(4), 467-484.
    〔51〕 Karahanna, E., Straub, D. W., & Chervany, N. L. (1999). Information technology
    adoption across time: A cross-sectional comparison of pre-adoption and post-adoption
    beliefs. MIS quarterly, 183-213.
    48
    〔52〕 Mahakittikun, T., Suntrayuth, S., & Bhatiasevi, V. (2020). The impact of
    technological-organizational-environmental (TOE) factors on firm performance:
    Merchant’s perspective of mobile payment from Thailand’s retail and service
    firms. Journal of Asia Business Studies, 15(2), 359-383.
    〔53〕 De Bellis, E., & Johar, G. V. (2020). Autonomous shopping systems: Identifying and
    overcoming barriers to consumer adoption. Journal of Retailing, 96(1), 74-87.
    〔54〕 Lee, Y., & Kozar, K. A. (2008). An empirical investigation of anti-spyware software
    adoption: A multitheoretical perspective. Information & Management, 45(2), 109-119.
    〔55〕 Plouffe, C. R., Hulland, J. S., & Vandenbosch, M. (2001). Richness versus parsimony
    in modeling technology adoption decisions—understanding merchant adoption of a smart
    card-based payment system. Information systems research, 12(2), 208-222.
    〔56〕 Moon, K. L., & Ngai, E. W. T. (2008). The adoption of RFID in fashion retailing: a
    business value‐added framework. Industrial Management & Data Systems, 108(5), 596-
    612.
    〔57〕 Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer
    technology: A comparison of two theoretical models. Management science, 35(8), 982-
    1003.
    〔58〕 Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance
    of information technology: Toward a unified view. MIS quarterly, 425-478.
    〔59〕 Taylor, S., & Todd, P. A. (1995). Understanding information technology usage: A
    test of competing models. Information systems research, 6(2), 144-176.
    〔60〕 Van der Heijden, G. A., Schepers, J. J., Nijssen, E. J., & Ordanini, A. (2013). Don’t
    just fix it, make it better! Using frontline service employees to improve recovery
    performance. Journal of the Academy of marketing Science, 41, 515-530.
    49
    〔61〕 Al-Jabri, I. M., & Roztocki, N. (2015). Adoption of ERP systems: Does information
    transparency matter?. Telematics and Informatics, 32(2), 300-310.
    〔62〕 Moore, G. C., & Benbasat, I. (1991). Development of an instrument to measure the
    perceptions of adopting an information technology innovation. Information systems
    research, 2(3), 192-222.
    〔63〕 Choi, J., Lee, A., & Ok, C. (2013). The effects of consumers' perceived risk and
    benefit on attitude and behavioral intention: A study of street food. Journal of Travel &
    Tourism Marketing, 30(3), 222-237.
    〔64〕 Oliveira, T., & Martins, M. F. (2010). Understanding e‐business adoption across
    industries in European countries. Industrial Management & Data Systems.
    〔65〕 Chang, Y. W., Hsu, P. Y., Huang, S. H., & Chen, J. (2020). Determinants of switching
    intention to cloud computing in large enterprises. Data Technologies and
    Applications, 54(1), 16-33.
    〔66〕 Chwelos, P., Benbasat, I., & Dexter, A. S. (2001). Empirical test of an EDI adoption
    model. Information systems research, 12(3), 304-321.
    〔67〕 Ifinedo, P. (2011). Internet/e‐business technologies acceptance in Canada's SMEs: an
    exploratory investigation. Internet Research, 21(3), 255-281.
    〔68〕 Chong, A. Y. L., & Chan, F. T. (2012). Structural equation modeling for multi-stage
    analysis on Radio Frequency Identification (RFID) diffusion in the health care industry.
    Expert Systems with Applications, 39(10), 8645-8654.
    〔69〕 Chen, C. D., Fan, Y. W., & Farn, C. K. (2007). Predicting electronic toll collection
    service adoption: An integration of the technology acceptance model and the theory of
    planned behavior. Transportation Research Part C: Emerging Technologies, 15(5), 300-311.
    50
    〔70〕 Ordanini, A., & Rubera, G. (2010). How does the application of an IT service
    innovation affect firm performance? A theoretical framework and empirical analysis on ecommerce. Information & Management, 47(1), 60-67.
    〔71〕 Watson, K., Hogarth‐Scott, S., & Wilson, N. (1998). Small business start‐ups:
    success factors and support implications. International Journal of Entrepreneurial
    Behavior & Research, 4(3), 217-238.
    〔72〕 Tan, M., & Teo, T. S. (2000). Factors influencing the adoption of Internet
    banking. Journal of the Association for information Systems, 1(1), 5.
    〔73〕 Du, W., & Li, M. (2019). Government support and innovation for new energy firms
    in China. Applied Economics, 51(25), 2754-2763.
    〔74〕 Songling, Y., Ishtiaq, M., Anwar, M., & Ahmed, H. (2018). The role of government
    support in sustainable competitive position and firm performance. Sustainability, 10(10),
    3495.
    〔75〕 Teo, H. H., Tan, B. C., & Wei, K. K. (1997). Organizational transformation using
    electronic data interchange: The case of TradeNet in Singapore. Journal of Management
    Information Systems, 13(4), 139-165.
    〔76〕 Seiders, K., Berry, L. L., & Gresham, L. G. (2000). Attention, retailers! How
    convenient is your convenience strategy?. MIT Sloan Management Review, 41(3), 79.
    〔77〕 Lin, H. F. (2007). Predicting consumer intentions to shop online: An empirical test
    of competing theories. Electronic Commerce Research and Applications, 6(4), 433-442.
    〔78〕 Tan, Z., & Ouyang, W. (2004). Diffusion and Impacts of the Internet and E‐
    Commerce in China. Electronic Markets, 14(1), 25-35.
    〔79〕 Hoogland, J. J., & Boomsma, A. (1998). Robustness studies in covariance structure
    modeling: An overview and a meta-analysis. Sociological Methods & Research, 26(3),
    329-367.
    51
    〔80〕 Boomsma, A., & Hoogland, J. J. (2001). The robustness of LISREL modeling
    revisited. Structural equation models: Present and future. A Festschrift in honor of Karl
    Jöreskog, 2(3), 139-168.
    〔81〕 Kline, T. J. (2005). Psychological testing: A practical approach to design and
    evaluation. Sage publications.
    〔82〕 Schumacker, R. E., & Lomax, R. G. (1996). A beginner's guide to structural equation
    modeling. Lawrence Erlbaum Associates, Inc.
    〔83〕 Ringle, C. M., Sarstedt, M., & Straub, D. W. (2012). Editor's comments: a critical
    look at the use of PLS-SEM in" MIS Quarterly". MIS quarterly, iii-xiv.
    〔84〕 Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver
    bullet. Journal of Marketing theory and Practice, 19(2), 139-152.
    〔85〕 Fornell, C., & Larcker, D. F. (1981). Structural equation models with unobservable
    variables and measurement error: Algebra and statistics.
    〔86〕 Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2006).
    Multivariate data analysis 6th Edition.
    〔87〕 Clark, L. A., & Watson, D. (2016). Constructing validity: Basic issues in objective
    scale development.
    〔88〕 Kline, R. B. (2011). Principles and practice of structural equation modeling. New
    York: Guilford Press
    〔89〕 Gold, A. H., Malhotra, A., & Segars, A. H. (2001). Knowledge management: An
    organizational capabilities perspective. Journal of management information systems, 18(1),
    185-214.
    〔90〕 Teo, T. S., Srivastava, S. C., & Jiang, L. I. (2008). Trust and electronic government
    success: An empirical study. Journal of management information systems, 25(3), 99-132.
    52
    〔91〕 Oliveira, T., Thomas, M. and Espadanal, M. (2014), “Assessing the determinants of
    cloud computing adoption: an analysis of the manufacturing and services sectors”,
    Information and Management, Vol. 51 No. 5, pp. 497-510.
    〔92〕 Puklavec, B., Oliveira, T., & Popovič, A. (2018). Understanding the determinants of
    business intelligence system adoption stages: An empirical study of SMEs. Industrial
    Management & Data Systems.
    〔93〕 Grewal, D., Noble, S. M., Roggeveen, A. L., & Nordfalt, J. (2020). The future of instore technology. Journal of the Academy of Marketing Science, 48(1), 96-113.
    〔94〕 Workman, M. (2005). Expert decision support system use, disuse, and misuse: a study
    using the theory of planned behavior. Computers in Human Behavior, 21(2), 211-231.
    〔95〕 Pavlou, P. A., & Fygenson, M. (2006). Understanding and predicting electronic
    commerce adoption: An extension of the theory of planned behavior. MIS quarterly, 115-
    143.

    QR CODE
    :::