| 研究生: |
劉靜怡 Jian-Yi Liu |
|---|---|
| 論文名稱: |
鈦鋯雙氧化物觸媒之製備及其性質研究 |
| 指導教授: |
陳郁文
Yu-Wen Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 88 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 光催化反應 、共沈澱 、鈦鋯雙氧化物 |
| 相關次數: | 點閱:4 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以共沈澱法製備不同比例的鈦鋯雙成份觸媒,探討二氧化鋯添加於二氧化鈦中對其物性與化性的影響,而化學共沈澱法具有高均勻性,高反應性,以及精確的化學劑量比。首先將四氯化鈦與四氯化鋯分別以不同比例配置,與水混合成水溶液,加入氨水以調整pH值到9,使其充分混合攪拌後,即產生均勻的氫氧基配位前導化合物與氯化銨共沈物,再以蒸餾水洗去殘留的氯化物,經過過濾及100℃乾燥後,將乾燥後的粉末於300℃、500℃、700℃及900℃下鍛燒燒結5小時,升溫速率10℃/sec ,如此可得到不同比例下純淨的鈦鋯雙成份光觸媒,TiO2 之重量組成分別為 0、0.2、0.4、0.6、0.8和1.0。並利用Differential thermal analysis、Thermogravimetric analysis、X-ray diffraction、氮吸附和FT-IR等儀器作為粉體與燒結體之晶形性質分析。
實驗結果顯示鈦鋯雙成份的觸媒其表面積比純的二氧化鈦與純二氧化鋯觸媒高,在100℃時其表面積都隨鋯成份的增加而增加,300℃亦是,但500℃高溫鍛燒之後,鋯成份增加其表面積反而會下降。
由DTA圖發現各比例的鈦鋯觸媒在100℃左右都有一吸熱峰,這是因為粉體中水分的去除,由TGA熱重分析圖中發現所有樣品在180℃-400℃重量的損失,此係因銨離子被去除,DTA圖大約在600-650℃間另有一放熱峰,此係因晶相產生。
從XRD圖中發現,不管任何一種比例,當燒結到700℃之後,就形成完美的鈦鋯雙氧化物晶型,而且加入的鋯成分愈多愈會抑制鈦結晶生成。
以製備出的鈦鋯雙氧化物觸媒進行醋酸可見光催化反應測試,並以純二氧化鈦觸媒為對照,結果發現在相同環境條件下,鈦鋯雙氧化物的催化結果較純二氧化鈦觸媒來的佳。
1.Arata, K., Tanabe, K., “Epoxide rearrangement .12. Isomerization of cyclohexene oxide over solid acids and bases”, 53, pp.299-303, 1980.
2.Buchanan, R. C., “Ceramic materials for electroonics” (Dekker, New York), pp.154, 1986.
3.McHale, A. E., Roth, R. S., “Low-temperature phase relationships in the system ZrO2- TiO2”, 69, PP.827-832, 1986.
4.Hahn, H., in “Ceramic transactions”, 1B, Ceramic Powder Science II, edited by Messing, G. H., Fuller Jr, E. R., Hausner, H (American Ceramic Society, Westerville, Ohio), pp.1115, 1988.
5.Ahmed, M. S., Attia, Y. A., “Aerogel materials for photocatalytic detoxification of cyanide wastes in water”, J. Non-crystalline Solids, 186, pp.402-407, 1995.
6.Richardson, S. D., Thruston, A. D., Collette, T. M., Patterson, K. S., Lykins, B. W., Ireland, J. C., “Identification of TiO2/UV disinfection by-products in drinking-water”, Environ. Sci. Technol., 30, pp. 3327-3334, 1996.
7.Wilson, E. K., “Bitten by the Space Bug”, Chemical and Engineering News, 74, pp27-31, 1996..
8.Suk, Y. L., Weixiong, P., Ching, F. N., “Catalytic hydrolysis of dichlorodifluoromethane (CFC-12) on unpromoted and sulfate promoted TiO2-ZrO2 mixed oxide catalysts”, Applied Catalysis B: Environmental, 24, pp.207-217, 1999.
9.Tajima, M., Niwa, M., Fujii, Y., Koinuma, Y., Aizawa, R., Kushiyama, S., Kobayashi, S., Mizuno, K., Ohuchi, H., “Decomposition of chlorofluorocarbons on TiO2-ZrO2”, Applied Catalysis B: Environmental, 12, pp.263-276, 1996.
10.Tajima, M., Niwa, M., Fujii, Y., Koinuma, Y., Aizawa, R., Kushiyama, S., Kobayashi, S., Mizuno, K., Ohuchi, H., “Decomposition of chlorofluorocarbons on W/TiO2-ZrO2”, Applied Catalysis B: Environmental, 14, pp.97-103, 1997.
11.Fu, X., Clark, L. A., Yang, Q., Anderson, M. A.,“Enhanced photocatalytic performance of titania-based binary metal oxide: TiO2/SiO2 and TiO2/ZrO2”, Environ. Sci. Technol., 30, pp.647-653, 1996.
12.Daly, et al., “Hydrodesulfurization over a TiO2-ZrO2 supported CoO-MoO3 Catalyst”, J. Catal., 108, pp.401, 1987.
13.Haneda, M., Kintaichi, Y., Inaba, M., Hamada, H., “Infrared study of catalytic ruduction of nitrogen monoxide by propene over Ag/ TiO2-ZrO2”, Catalysis Today, 42, pp.127-135, 1998.
14.Sclafani,A., Herrmann, J. H., “Comparison of the Photoelectronic and Photocatalytic Activities of Various Anatase and Rutile Forms of Titania in Pure Liquid Organic Phases and in Aqueous-Solutions”, J. Phys. Chem., 100, pp.13655-13661, 1996.
15. Sclafani,A., Palmisano, L., Schiavello, M., “Influence of the preparation methods of TiO2 on the photocatalytic degradation of phenol in aqueous dispersion”, J. Phys. Chem., 94, pp.829-832, 1990.
16. Kutty, T. R. N., Ahuja, S., “Retarding effect of surface hydroxylation on titanium(IV) oxide photocatalyst in the degradation of phenol”, Mate. Res. Bull., 30, pp.233-241, 1995.
17.Subba Rao, E. C., Maiti, H. S. and Srivastava, K. K., Phy. Status Solidi, 21, pp.9-12, 1974.
18.Barin, I., “Thermochemical Data of Pure Substances”, Berlin, 1989.
19. R. C. Gaviee, “Zirconium Dioxide and Some of its Binary system”, High Temperature Oxide PartII, pp.117-129, 1970.
20.吳榮宗, “含氧化鈦混合型金屬氧化物觸媒之製備極其應用研究”, 博士論文, 國立清華大學化學工程研究所, 1985.
21.Hattori, H., et al., “The nature of active site on TiO2 and TiO2-SiO2 for the isomerization of 1-butene”, J. Catal., 43, pp.172, 1975.
22.Tanabe, K., ROC-JAPAN Symposium on Fundamental and Applied Catalysis, 1st, 1982.
23. Wu, J. C., “Nonoxidative dehydrogenation of ethlbenzene over TiO2-ZrO2 catalysts”, J. Catal., 87, pp.98-107, 1984.
24.Navio, J. A., Marchena, F. J., Macias, M., Sanchez-Soto, P. J., “Formation of zirconium titanate powder from a sol-gel prepared reactive precursor”, J. of Materials Science, 27, pp.2463-2467, 1992.
25.Wang, I., Chung, C. S., Shiau, R. J., Wu, J. C., “Non-Oxidative Dehydrogenation of Ethylbenzene over TiO2-ZrO2 Catalysts. 1.Effect of Composition on Surface Properties and Catalytic Activties”, J. of Catalysis, 83, pp. 428-439, 1983.
26.Daturi, M., Cremona, A., Milella, F., Busca, G., Vogna, E., “Characterisation of zirconia-titania Powders Prepared by Coprecipitation”, J. of the European Ceramic Society, 18, pp. 1079-1087, 1998.
27.Zhitomirsky, I., Gor-Or, L., “Cathodic electrosynthesis of ceramic deposits”, J. of the European Ceramic Society, 16, pp.819-824, 1996.
28.Skoog, D. A. and West, D. M.著,魏斯特譯,儀器分析,曉原出版社,1984.
29..Haneda, M., Kintaichi, Y., Inaba, M., Hamada, H., “Catalytic performance of silver- and indium-supported TiO2-ZrO2 binary oxide for the selective reduction of nitrogen monoxide with propene”, Applied Surface Science, 121/122, pp.391-395, 1997.
30.J. C.,W., C.S.,C., C. L., A., Ikai, W., “Nonoxidative dehydrogenation of ethylbenzene over TiO2-ZrO2 catalysts”, Journal of Catalysis, 87, pp.98-107, 1984.
31.Shin, H., Agarwal, M., Guire, M. R. D., Heuer, A. H., “Solid-state diffusive amorphization in TiO2/ZrO2 bilayers”, J. Am. Ceramic Society, 79, pp.1975-1978, 1996.
32.Zhitomirsky, I., Gal-Or, L., “Cathodic electrosynthesis of ceramic deposits”, J. of the European Ceramic Society, 16, pp. 819-824, 1995
33.Haneda, M., Kintaichi, Y., Inaba, M., Hamada, H., “Catalytic performance of indium-supported TiO2-ZrO2 for the selective reduction of nitrogen monoxide in the presence of oxygen”, Catalysis Letters, 48, pp.121-127, 1997.
34. Huang D., Xiao Z. D., Gu J. H., Huang N. P., Yuan C. W., “TiO2 thin films formation on industrial glass through self-assembly”, Thin Solid Films, 305, pp.110-115, 1997.
35.Xu, Q., Anderson, M. A., “Sol-gel route to synthesis of microporous ceramic membranes: preparation and characterization of microporous TiO2-ZrO2 xerogels”, J. Am. Ceramic Soc., 77, pp.1939-1945.
36.Khalil, K. M. S., Baird, T., Zaki, M. I., El-Samahy, A. A., Awad, A. M., “Synthesis and characterization of catalytic titaniuas via hydrolysis of titanium(IV) isopropoxide”, Colloids Surf. A: 132, PP.31-44, 1998.
37.Yoldas, B. E., “Hydrolysis of titanium alkoxide and effects of hydrolytic polycondensation parameters”, J. Mater. Sci., 21, pp.1087-1092, 1986.
38.Bischoff, B. L., Anderson, M. A., “Peptization process in the sol-gel preparation of porous anatase(TiO2)”, Chem. Mater., 7, pp.1772-1778, 1995.
39.Anna, E. M., Robert, S. R., “Low-temperature phase relationships in the system ZrO2- TiO2”, J. Am. Ceram. Soc., 69, pp.827-832, 1986.
40.Fu, X., Zeltner, W. A., Anderson, M. A., “Application in photocatalytic purification of air”, Studies in Surf. Sci. and Catal.,103, 1996.
41.Grishchenko, L. I., Medvedkova, N. G., Frolov, Y. G., “Aggregation stability of titanium dioxides hydrosols”, Colloid J., 56, PP.215-217, 1994.
42.Elfenthal, L., Klein, E., Rosendahl, F., “Process for the production of a fine particle titanium dioxide”, United States patent 5, 215, 580, 1993.
43.Osamu, T., Akira, F., Kazuhito, H., “Production of titanium dioxidde photocatalyst”, Japan Patent 9, 276, 694A, 1997.
44.Richard, P., Charles, E., Joseph, R., “Method for the photocatalytic conversion of methane”, United States patent 5, 720, 858, 1998.
45.Sakamoto, M., Okuda, H., Koike, S., Yamasaki, Y., “Titania sol”, United States patent 5, 049, 309, 1991.
46.Sato, G., Arima, Y., Tanaka, H., Hiraoka, S., ”Titanium dioxide sol and process for preparation thereof”, United States patent 5, 403, 513, 1995.
47.Bianco, A., Gusmano, G., Freer, R., Smith, P., “Zirconium Titanate microwave dielectrics prepared via polymeric precursor route”, Journal of the European Ceramic Society, 19, pp.959-963, 1999.
48.吳炳佑, “含TiO2光催化膜之製備與性質”, 博士學位論文,國立中央大學化學工程研究所, 1996.
49.馬志明, “以紫外線/二氧化鈦程序處理氣相三氯乙烯污染物反應行為之研究”, 碩士論文, 國立台灣科技大學化學工程技術研究所, 1998.