跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王丕獅
Pi-shih Wang
論文名稱: 針對移動性目標物的有效率無線感測網路
Energy-Efficient Wireless Sensor Networks for Mobile Target Detections
指導教授: 孫敏德
Ming-Te Sun
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
畢業學年度: 100
語文別: 英文
論文頁數: 42
中文關鍵詞: 移動目標無線感測網路網格網路
外文關鍵詞: data dissemination, Mobile Target, Wireless Sensor Networks
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無線感測網路有許多應用,戰場便是其中之一。無線感測網路可以用於戰場上的目標物偵測及資料收集。然而,目標物和資料收集點都會移動,這對設計與實作網路系統帶來許多挑戰。雖然目前已經有一些處理多移動資料收集點的研究,但他們假設資料收集點位置已知或是利用耗費能源的方式取得資料收集點的位置。為了改善此方面的問題,我們提出一個在無線感測網路下的資料收集架構,叫動態自適應性的網狀網路。我們分別利用樹狀和網狀網路的優點使得資料收集與遞送更加地有效率。此外,我們介紹的兩種方法來平衡網路負載量,第一個是將資料遞送的負載平均分攤,第二個是調整網路結構平衡網格間的負載量。最後,我們提出改良式的查詢聚集方法,使得可以減少資料回傳等待時間及降低封包流量。模擬結果顯示出動態自適應性的網狀網路在多移動資料收集點的無線感測網路中是已知中最好的資料收集方案。


    In battlefields, the wireless sensor network can be used for target detection and data collection. However, the mobility of targets as well as the sinks creates challenges for the design and implementation of the system. While there are research proposals capable of handling multiple mobile sinks, these protocols either assume the knowledge of sink location or create too many flooding, leading to a quicker energy consumption. To deal with this issue, we propose a framework for data collection in wireless sensor networks, namly Dynamic and Adaptive Grid (DAG). In our framework, we take the advantages of both grid and tree data structures to route queries and data efficiently. In addition, two mechanisms are introduced to balance the load in the network. The first one helps to distribute the tasks more evenly; and the second one adjust the size of grids to balance the traffic load in each grid. Last, an improved query aggregation is proposed to reduce the query response time and the traffic associated with each query. The simulation results show that DAG outperforms the best known data collection solutions for wireless sensor networks with multiple mobile targets and sinks.

    Contents 1 Introduction 1 2 Literature Review 3 3 Dynamic and adaptive grid 5 3.1 Network construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.1.1 Grid construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.1.2 The shortest path tree construction . . . . . . . . . . . . . . . . . . 12 3.2 Query and data forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.3 Mobility maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.3.1 Sink mobility maintenance . . . . . . . . . . . . . . . . . . . . . . . 14 3.3.2 Target mobility maintenance . . . . . . . . . . . . . . . . . . . . . . 15 3.4 Dissemination node energy consumption balancing . . . . . . . . . . . . . . 16 3.5 Dynamic grid adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.6 Query aggregation improvement . . . . . . . . . . . . . . . . . . . . . . . . 18 4 Simulation Results 19 4.1 Simulation setting and metrics . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.2 Impact of the numbers of sinks . . . . . . . . . . . . . . . . . . . . . . . . 21 4.3 Impact of sink mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.4 Impact of node density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5 Conclusion 28 6 Reference 29

    [1] F. Ye, H. Luo, J. Cheng, S. Lu, L. Zhang “A two-tier data dissemination model
    for large-scale wireless sensor networks,” Proceedings of the 8th annual international
    conference on Mobile computing and networking (MobiCom), pp. 148-159, Sep. 2002.
    [2] Z. Chen, S. Liu, J. Huang “Multi-tier Grid Routing to Mobile Sink in Large-scale
    Wireless Sensor Networks,” Journal of Networks, pp. 765-773, MA. 2011.
    [3] J. H. Shin, J. Kim, K. Park, D. Park “Railroad: virtual infrastructure for data dissemination
    in wireless sensor networks,” Proceedings of the 2nd ACM international
    workshop on Performance evaluation of wireless ad hoc, sensor, and ubiquitous net-
    works (MSWiM), pp. 168 - 174, Oct. 2005.
    [4] O. Younis, S. Fahmy, “HEED: A Hybrid, Energy-Efficient, Distributed clustering
    approach for Ad Hoc sensor networks,” IEEE Transactions on Mobile Computing,
    pp.366 - 379, 2004.
    [5] N. C. Wang, Y. F. Huang, J. S. Chen, P. C. Yeh, “Energy-aware data aggregation
    for grid-based wireless sensor networks with a mobile sink,” Wireless Personal
    Communications, pp. 1539-1551, Dec. 2007.
    [6] C. J. Lin, P. L. Chou, C. F. Chou, “HCDD: hierarchical cluster-based data dissemination
    in wireless sensor networks with mobile sink,” Proceedings of the 2006 inter-
    national conference on Wireless communications and mobile computing (IWCMC),
    pp. 1189 - 1194, Jul. 2006.
    [7] Z. Zhou, X. Xiang, X. Wang, J. Pan, “An Energy-Efficient Data-Dissemination Protocol
    inWireless Sensor Networks,” Proceedings of the 2006 International Symposium
    on World of Wireless, Mobile and Multimedia Networks (WOWMOM), pp. 13 - 22,
    Jun. 2006.
    [8] S. Basagni, A. Carosi, E. Melachrinoudis, C. Petrioli, Z. M. Wang, “Controlled sink
    mobility for prolonging wireless sensor networks lifetime,” Wireless Networks, pp.
    831 - 858, Dec. 2008.
    [9] K. Fodor , A. Vidacs, “Efficient routing to mobile sinks in wireless sensor networks, ”
    Proceedings of the 3rd international conference on Wireless internet (WICON), Oct.
    2007.
    [10] R. Shah, S. Roy, S. Jain, W. Brunette, “Data MULEs: Modeling a Three-tier Architecture
    for Sparse Sensor Networks,” IEEE SNPA Workshop, pp. 215 - 233, MA.
    2003.
    [11] D. Jea, A.A. Somasundara, M.B. Srivastava, “Multiple controlled mobile elements
    (data mules) for data collection in sensor networks, ” IEEE Distributed Computing
    in Sensor Systems (DCOSS), pp. 244 - 257, Jul. 2005.
    [12] K. Kweon, H. Ghim, J. Hong, H. Yoon, “Grid-Based Energy-Efficient Routing from
    Multiple Sources to Multiple Mobile Sinks in Wireless Sensor Networks,” Interna-
    tional Symposium on Wireless Pervasive Computing (ISWPC), pp. 1 - 5, Feb. 2009.
    [13] H. S. Kim, T. F. Abdelzaher, W. H. Kwon, “Minimum-Energy Asynchronous Dissemination
    to Mobile Sinks in Wireless Sensor Networks,” ACM Conference on Embedded
    Networked Sensor Systems (SenSys), pp. 193 - 204, Nov. 2003.
    [14] B. E. Hamida, G. Chelius, “A Line-Based Data Dissemination Protocol for Wireless
    Sensor Networks with Mobile Sink,” IEEE International Conference on Communi-
    cations (ICC), pp. 2201 - 2205, MA. 2008.
    [15] G. Wang, T. Wang, W. Jia, M. Guo, H. H. Chen, M. Guizani, “Local Update-Based
    Routing Protocol in Wireless Sensor Networks with Mobile Sinks,” IEEE Interna-
    tional Conference on Communications (ICC), pp. 3094 - 3099, Jun. 2007.
    [16] A. A. Abbasi, M. Younis, “A survey on clustering algorithms for wireless sensor
    networks,” Computer Communication , pp. 2826 - 2841, Oct. 2007.
    [17] E. B. Hamida, G. Chelius, “Strategies for data dissemination to mobile sinks in
    wireless sensor networks,” Wireless Communications, IEEE , pp. 31 - 37, Dec. 2008.
    [18] Z. H. Mir, Y. B. Ko, “A quadtree-based data dissemination protocol for wireless
    sensor networks with mobile sinks,” in Proceedings of 11th International Conference
    Personal Wireless Communications (PWC) pp. 447 - 458, Sep. 2006.
    [19] W. R. Heinzelman, J. Kulik, H. Balakrishnan, “Adaptive protocols for information
    dissemination in wireless sensor networks,” The Fifth International Conference on
    Mobile Computing and Networking (MobiCom), pp. 174 - 185, Aug. 1999.
    [20] H. L. Xuan, S. Lee, “A coordination-based data dissemination protocol for wireless
    sensor networks,” Proceedings of the 2004 Intelligent Sensors, Sensor Networks and
    Information Processing Conference (ISSNIP), pp. 13 - 18, Dec. 2004.
    [21] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, F. Silva, “Directed
    diffusion for wireless sensor networking,” IEEE/ACM Transactions on Networking
    (TON), pp. 2 - 16, Feb. 2003.
    [22] G. Mao, B. Fidan, B. D.O. Anderson,“Wireless sensor network localization techniques,”
    Computer Networks , pp. 2529V2553, Jul. 2007.
    [23] B. Hofmann-Wellenhof, H. Lichtenegger, J. Collins, Global Positioning System: The-
    ory and Practice, Fourth Edition, Springer Verlag, 1997.
    [24] The Network Simulator - ns-2. http://www.isi.edu/nsnam/ns/

    QR CODE
    :::