| 研究生: |
吉村友希 Tomoki Yoshimura |
|---|---|
| 論文名稱: | Development of microbiome modification using lactic acid bacterial phages and the artificial synthesis technology of phages using lactic acid bacteria as hosts |
| 指導教授: |
徐敬衡
Chin-Hang Shu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 33 |
| 中文關鍵詞: | 腸道微生物組 、乳酸杆菌 、噬菌體 、微生物組調控 、噬菌体人工合成 |
| 外文關鍵詞: | Gut microbiome, Lactic acid bacteria, Bacteriophage specificity, Microbiome modulation, Phage synthesis |
| 相關次數: | 點閱:24 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人體腸道中共棲有超過 1,000 種微生物,總數約為 100 兆個細胞。腸道菌相失衡已知與多種疾病有關,因此理解個別細菌的功能以及其在腸道中的交互作用具有重要意義。在腸道菌群中,乳酸菌(LAB)被公認為有益的共生菌。雖然將乳酸菌納入腸道菌群所帶來的健康益處已被廣泛證實,但若腸道中原生乳酸菌數量減少,對整體菌相的影響以及與其他細菌之間的交互作用仍不清楚。因此,理解乳酸菌在腸道菌相中的角色至關重要。噬菌體(phage)因其高度的宿主特異性,被視為潛在的腸道菌相調控工具。噬菌體可自廢水、土壤等環境來源中分離而得。在本研究室中,我們成功分離出兩種可感染Lactiplantibacillus plantarum NCIMB 8826 的噬菌體,分別為 ΦLpTT1 和 ΦLpTT2。這些噬菌體已被證實能在由四種不同細菌(大腸桿菌Escherichia coli、普特假單胞菌 Pseudomonas putida、枯草桿菌 Bacillus subtilis 及 L.plantarum)構成的合成菌相中,專一性地抑制 L. plantarum 的生長。然而,若要有效利用這些噬菌體來進行菌相調控,亦需評估其對腸道中其他乳酸菌的特異性。此外,由於環境樣本中是否存在目標噬菌體具有不確定性,且噬菌體的分離須依賴可培養的宿主細菌,因此分離噬菌體的過程耗時且具挑戰性。因此,發展以噬菌體DNA為基礎的合成方法,以取代傳統從環境中分離噬菌體的方式,顯得尤為關鍵。在本研究中,我使用斑塊分析法(plaque assay)評估了ΦLpTT1 與 ΦLpTT2 對其宿主 L.plantarum 以外的多種乳酸菌及五種不同菌株的感染特異性。隨後,我測試了這兩株噬菌體在由八種乳酸菌組成的合成菌相中對 L. plantarum 生長的抑制能力。此外,為實現乳酸菌噬菌體的合成,我將所需的同源重組酶導入 L. plantarum。包含RecE/T 同源酶基因的質體 pLH01 在誘導肽(MAGNSSNFIHKIKQIFTHR)添加後能表現該酶,
並成功導入 L. plantarum。接著,為確認 RecE/T 同源酶可識別的最佳同源序列長度,我將pKO-2000 質體分割成具 50、100、200 與 500 bp 同源序列的兩段,並分別導入 L. plantarum,以確認是否發生同源重組。根據這些實驗結果,最適合 RecE/T 同源酶識別的同源序列長度得以確定。
Abstract
The human gut harbors over 1,000 species of microorganisms, totaling approximately 100 trillion cells. Imbalances in this microbiome are known to contribute to a wide range of diseases, highlighting the importance of understanding the roles of individual bacteria and their interactions within the gut. Among the gut microbiota, lactic acid bacteria (LAB) are recognized as beneficial commensals. While the health benefits of incorporating LAB into the microbiome are well established, the impact of a reduction in native LAB populations on the microbiome and their interactions with other bacteria remains unclear. Therefore, understanding the role of LAB in the gut microbiome is essential. Bacteriophages (phages), which exhibit high host specificity, have garnered attention as potential tools for microbiome manipulation. Phages can be isolated from environmental sources such as wastewater and soil. In our laboratory, we have successfully isolated two phages, ΦLpTT1 and ΦLpTT2, that infect Lactiplantibacillus plantarum NCIMB 8826. These phages have been shown to specifically inhibit L. plantarum in a synthetic microbiome composed of four different bacteria (Escherichia coli, Pseudomonas putida, Bacillus subtilis, and L. plantarum). However, to effectively utilize these phages for microbiome manipulation, it is also necessary to evaluate their specificity toward other LAB species present in the gut. Moreover, the isolation of phages is time consuming and challenging due to the uncertainty of their presence in environmental samples and the need for cultivable host bacteria. Therefore, it is critical to develop methods to synthesize phages rather than isolate them from environmental sources, using phage DNA. In this study, I evaluated the specificity of ΦLpTT1 and ΦLpTT2 against several other LAB species and five different bacterial strains, in addition to their host L. plantarum, using plaque assays. Subsequently, I tested the ability of these phages to inhibit the growth of L. plantarum in an eight LAB species synthetic microbiome. Additionally, the homologous recombination enzyme required for synthetic LAB phage synthesis was introduced into L. plantarum. The plasmid pLH01, which contains the RecE/T homologue gene and is expressed upon the addition of the inducer peptide (MAGNSSNFIHKIKQIFTHR), was introduced into L. plantarum. Subsequently, to determine the optimal length of the homologous sequence recognized by the RecE/T homologue, the pKO-2000 plasmid was divided into two fragments with homologous sequences of 50, 100, 200, and 500 bp. Each fragment was introduced into L. plantarum, and homologous recombination was confirmed. Based on these experiments, the optimal homologous sequence length for RecE/T homologue recognition was determined.
References
Zheng, B., Xiao, Z., Liu, J., Zhu, Y., Shua, K., Chen, X., Liu, Y., Hu, R., Peng, G., Li, J., Hu, Y., Su,
Z., Fang, M., and Li, J. (2024) Vertical differences in carbon metabolic diversity and dominant flora
of soil bacterial communities in farmlands. Sci. Rep. 14:9445
Tang, Y.-Q., Shigematsu, T., Morimura, S., and Kida, K. (2015) Dynamics of the microbial community
during continuous methane fermentation in continuously stirred tank reactors. J. Biosci. Bioeng.
119:375-383
Rieder, R., Wisniewski, P.-J., Alderman. B.-L. and Campbell, S.-C. (2017) Microbes and mental
health: A review. Brain Behav. Immu. 66:9-17
Ning, L., Zhou, Y. L., Sun, H., Zhang, Y., Shen, C., Wang, Z., Xuan, B., Zhao, Y., Ma, Y., Yan, Y.,
Tong, T., Huang, X., Hu, M., Zhu, X., Ding, J., Zhang, Y., Cui, Z., Fang, J.-Y., Chen, H. and Hong, J.
(2023) Microbiome and metabolome features in inflammatory bowel disease via multi-omics
integration analyses across cohorts. Nat. Commun. 14:7135.
Park, D.-H., Kim, J-W., Park, H.-J. and Hahm, D.-H. (2021) Comparative analysis of the microbiome
across the gut-skin axis in atopic dermatitis. Int. J. Mol. Sci. 22:4228
Gopalakrishnan, V., Spencer, C.-N., Nezi, L., Reuben, A., Andrews, M-C., Karpinets, T-V., Prieto, P.
A., Vicente, D., Hoffman, K., Wei, S.-C., Cogdill, A.-P., Zhao, L., Hudgens, C.-W., Hutchinson, D.-S.,
Manzo, T., Macedo, M. P. D., Cotechini, T., Kumar, T., Chen, W.-S., Reddy, S.-M., Sloane, R.-S.,
Galloway-Pena, J., Jiang, H., Chen, P.-L., Shpall, E.-J., Rezvani, K., Alousi, A.-M., Chemaly, R.-F.,
Shelburne, S., Vence, L.-M., Okhuysen, P.-C., Jensen, V.-B., Swennes, A.-G., McAllister, F., Sanchez,
E., M., R., Zhang, Y., Chatelier, E.-L., Zitvogel, L., Pons, N., Austin-Breneman J.-L., Haydu, L.-E.,
Burton, E.-M., Gardner, J.-M., Sirmans, E., Hu, J., Lazar, A.-J., Tsujikawa, T., Diab, A., Tawbi, H.,
Glitza, I.-C., Hwu, W.-J., Patel, S.-P., Woodman, S.-E., Amaria, R.-N., Davies, M.-A., Gershenwald,
J.-E., Hwu, P., Lee, J.-E., Zhang, J., Coussens, L.-M., Cooper, Z.-A., Futreal, P.-A., Daniel, C.-R.,
Ajami, N.-J., Petrosino, J.-F., Tetzlaff, M.-T., Sharma, P., Allison, J.-P., Jenq, R.-R. and Wargo, J.-A.
(2018) Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients.
Science 359:97-103
Guida, F., Turco, F., Iannotta, M., Gregorio, D.-D., Palumbo, I., Sarnelli, G., Furiano, A., Napolitano,
F., Boccella, S., Luongo, L., Mazzitelli, M., Usiello, A., Filippis, F-D., Iannotti, F.-A., Piscitelli, F.,
Ercolini, D., Novellis, V.-d., Marzo, V.-D., Cuomo, R. and Maione, S. (2018) Antibiotic-induced
microbiota perturbation causes gut endocannabinoidome changes, hippocampal neuroglial
reorganization and depression in mice. Brain Behav. Immu. 67:230-245
Lobanovska, M. and Pilla, G. (2017) Penicillin's discovery and antibiotic resistance: Lessons for the
Future? Yale J. Biol. Med. 90:135-145
Zhang, S. and Chen, D.-C. (2019) Facing a new challenge: the adverse effects of antibiotics on gut
microbiota and host immunity. Chin. Med. J. 1:1135-1138
Fenneman, A.-C., Weidner, M., Chen, L.-A., Nieuwdorp, M. and Blaser, M.-J. (2023) Antibiotics in
the pathogenesis of diabetes and inflammatory diseases of the gastrointestinal tract. Nat. Rev.
Gastroenterol. Hepatol. 20:81-100
Nitzan, O., Elias, M., Peretz, A. and Saliba, W. (2016) Role of antibiotics for treatment of
inflammatory bowel disease. World J Gastroenterol. 22:1078-1087
Andrade, M.-J., Jayaprakash, C., Bhat, S., Evangelatos, N., Brand, A. and Satyamoorthy, K. (2017)
Antibiotics-induced obesity: A mitochondrial perspective. Public Health Genomics. 20:257-273
Ong, M.-S., Umetsu, D.-T. and Mandl, K.-D. (2014) Consequences of antibiotics and infections in
infancy: bugs, drugs, and wheezing. Ann Allergy Asthma Immunol. 112:441-445
Hao, W.-Z., Li, X.-J., Zhang, P.-W. and Chen, J.-X. (2020) A review of antibiotics, depression, and the
gut microbiome. Psychiatry Res. 284:112691
Yang, Chee, W. J., Chew, S. Y., and Than, L.-T.-L. (2020) Vaginal microbiota and the potential of
Lactobacillus derivatives in maintaining vaginal health. Microb Cell Fact. 19:203
Abedon, S.-T., Kuhl, S.-J., Blasdel, B.-G. and Kutter, E.-M. (2011) Phage treatment of human
infections. Bacteriophage. 1:66-85
Cisek, A.-A., Dabrowska, I., Gregorczyk, K.-P. and Wyzewski, Z. (2017) Phage therapy in bacterial
infections treatment: One hundred years after the discovery of bacteriophages. Curr. Microbiol.
74:277-283
Hendrix, R.-W., Margaret, C.-M.-S., Neil, B.-R. and Hatfull, G.-F. (1999) Evolutionary relationships
among diverse bacteriophages and prophages: All the world’s a phage. Proc. Natl. Acad. Sci. USA.
96:2192-2197
Bikard, D., Euler, C.-W., Jiang, W., Nussenzweig, P.-M., Goldberg, G.-W., Duportet, X., Fischetti, V.
A. and Marraffini, L.-A. (2014) Exploiting CRISPR-Cas nucleases to produce sequence-specific
antimicrobials. Nat. Biotechnol. 32:1146–1150
Citorik, R.-J., Mimee, M. and Lu, T.-K. (2014) Sequence-specific antimicrobials using efficiently
delivered RNA-guided nucleases. Nat. Biotechnol. 32:1141–1145
Clokie, M.-R., Millard, A.-D., Letarov, A.-V. and Heaphy, S. (2011) Phages in nature. Bacteriophage.
1:31-45
Tanaka, T., Sugiyama, R., Sato, Y., Kawaguchi, M., Honda, K., Iwaki, H. and Okano, K. (2024) Precise
microbiome engineering using natural and synthetic bacteriophages targeting an artificial bacterial
consortium. Front. Microbiol. 15:1403903.
Zhang, Z., Lv, J., Pan, L. and Zhang, Y. (2018) Roles and applications of probiotic Lactobacillus strains.
Appl. Microbiol. Biotechnol. 102:8135–8143
Turroni, F., Ventura, M., Buttó, L.-F., Duranti, S., O’Toole, P.-W., Motherway, M.-O. and Sinderen,
D.-V. (2014) Molecular dialogue between the human gut microbiota and the host: a Lactobacillus and
Bifidobacterium perspective. Cell. Mol. Life Sci. 71:183-203
Tannock, G.-W., Munro, K., Harmsen, H.-J.-M., Welling, G.-W., Smart, J. and Gopal, P.-K. (2000)
Analysis of the fecal microflora of human subjects consuming a probiotic product containing
Lactobacillus rhamnosus DR20. Appl. Environ. Microbiol. 66:2578-2588
Bundy, B.-C., Franciszkowicz, M.-J. and Swartz, J.-R. (2008) Escherichia coli based cell-free
synthesis of virus-like particles. Biotechnol. Bioeng. 100:28–37
Shin, J., Jardine, P. and Noireaux, V. (2012) Genome replication, synthesis, and assembly of the
bacteriophage T7 in a single cell-free reaction. ACS Synth. Biol. 1:408–413
Ando, H., Lemire, S., Pires, D.-P. and Lu, T.-K. (2015) Engineering modular viral scaffolds for
targeted bacterial population editing. Cell Syst. 1:187–196
Jaschke, P.-R., Lieberman, E.-K., Rodriguez, J., Sierra, A. and Endy, D. (2012) A fully decompressed
synthetic bacteriophage øX174 genome assembled and archived in yeast. Virology 434:278–284
Huang, H., Song, X. and Yang, S. (2019) Development of a RecE/T-Assisted CRISPR-Cas9 toolbox
for Lactobacillus. Biotechnol. J. 14:1800690
Yoshida, S., Okano, K., Tanaka, T., Ogino C., Kondo, A. (2011) Homo-D-lactic acid production from
mixed sugars using xylose-assimilating operon-integrated Lactobacillus plantarum. Appl. Microbiol.
Biotechnol. 92:67–76
Fristot, E., Bessede, T., Rufino, M.-C., Mayonove, P., Chang, H., Zuniga, A., Michon, A.-L.,Godreuil,
S., Bonnet, J. and Cambray, G. (2023) An optimized electrotransformation protocol for Lactobacillus
jensenii. PLoS One 18:0280935