| 研究生: |
葉添福 Tien-Fu Yeh |
|---|---|
| 論文名稱: |
最小二乘過濾法應用於動態GPS衛星定位平穩性之研究 Study on the Stationarity of Kinematic GPS Positioning Using Least Squares Filtering |
| 指導教授: |
吳究
Joz Wu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 全球衛星定位系統 、最小二乘過濾法 、協方差函數 |
| 外文關鍵詞: | Least squares filtering, GPS, Covariance function |
| 相關次數: | 點閱:31 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
結合GPS衛星載波相位及電碼虛擬距離觀測資料,若能解決觀測數據組間先驗方差/協方差資訊不全及相位模稜與幾何參數間高相關的問題,便可在單一時刻進行定位求解,應用於動態測量。本研究分別利用最佳線性無偏差估計式(BLUE)及白化濾波解關聯技術,解決上述兩個問題,可提升演算效率及求解成功率。
但成果分析上發現,在接收器不動的情形下,定位坐標卻隨著時間有數公分漂移的現象。因此斷定觀測量時間序列中除了幾何所需的訊號外,必存在著某種低頻的系統誤差訊號。本研究選擇最小二乘過濾法進行二次差分約化觀測量時間序列的系統訊號過濾,以高斯函數模式來尋求最小二乘密合曲線以建立協方差函數。成果顯示,此方法對於動態定位的平穩性有所助益。
If we can figure out the incompletion of variance/covariance information concerning several observed data sets and the high correlation between ambiguities and geometry parameters, combining with both GPS pseudoranges and carrier phases can position at each epoch and apply to kinematic surveying. Best Linear Unbiased Estimator (BLUE) and Whitening Filter were utilized respectively to solve the above-mentioned problem. They will increase the successful rate and efficiency.
When the receiver was stationary, we found the coordinates of positioning drifted several centimeters by the time. There must be some low frequency systematic error signals besides the signals required by geometry. To filter the systematic signals of the double-difference series, least-squares filtering was used. Gauss model were tested in order to build empirically the optional covariance function. The results show the method is helpful to the stationarity of kinematic positioning.
內政部,「應用全球定位系統實施台閩地區基本控制點測量計畫總報告」,台北(1998)。
吳究、李邱德,「GPS衛星測量載波相位模稜固定法之研究」,中國土木水利工程學刊,第七卷,第四期,第523-531頁(1995)。
吳究、葉添福,「衛星定位L1/L2載波相位BIQUE方差分量之估計」,第五屆GPS衛星科技研討會論文集,第135-138頁(2002)。
林修國,「模稜求定與時鐘偏差估計應用與衛星相對定位及姿態求解」,博士論文,國立中央大學大氣物理研究所,中壢(1997)。
徐浩雄,「白化濾波應用於GPS動態衛星測量之研究」,碩士論文,國立中央大學土木工程研究所,中壢(2000)。
黃昭銘,「消去GPS相位模稜OTF相對定位之研究」,碩士論文,國立中央大學土木工程研究所,中壢(2001)。
湯德誠,「應用最小範數二次不偏估計法(MINQUE)探討觀測量隨機模式」,碩士論文,國立成功大學航空測量研究所,台南(1988)。
游豐吉,「應用GPS載波相位餘弦模式於衛星測量之研究」,博士論文,國立中央大學土木工程研究所,中壢(1999)。
蔡忠明,「參數解關聯應用於GPS雙主站相位模稜求解」,碩士論文,國立中央大學土木工程研究所,中壢(2002)。
Bierman, G. J., Factorization Methods for Discrete Sequential Estimations, Acdemic Press, Inc., New York (1977).
Crocetto, N., M. Gatti and P. Russo, “Simplified formulae for the BIQUE estimation of variance components in disjunctive observation groups,” Joural of Geodesy, vol. 74, pp. 447-457 (2000).
Frei, E. and G. Beutler, “Rapid static positioning based on the fast ambiguity resolution approach ‘FARA’: theory and first results,” Manuscripta Geodaetica, Vol. 15, No. 6, pp. 325-356 (1990).
Grafarend, E. W., “Mixed integer-real valued adjustmemt(IRA) problems: GPS initial cycle ambiguity resolution by means of the LLL algorithm,” GPS Solutions, Vol. 4, No. 2, pp. 31-44 (2000).
Han S., “Quality-control issues relating to instantaneous ambiguity resolution for real-time GPS kinematic positioning,” Journal of Geodesy, Vol. 71, pp. 351-361 (1997).
Hofmann-Wellenhof, B., H. Lichtenegger and J. Collins, Global Positioning System Theory and Practice, Springer-Verlag, Wien (1997).
, M. and L. E. , “Rapid GPS ambiguity resolution for short and long baselines,” Journal of Geodesy, Vol. 76, pp. 381-391 (2002).
Koch, K. R., Parameter Estimation and Hypothesis Testing in Linear Models, Springer, New York (1999).
Kuang, D., B. E. Schutz and M. M. Watkins, “On the structure of geometric positioning information in GPS measurements,” Journal of Geodesy, Vol. 71, pp. 35-43 (1996).
Leick, A., GPS Satellite Surveying, John Wiley and Sons, New York (1995).
Liu, L. T., H. T. Hsu, Y. Z. Zhu and J. K. Ou, “A new approach to GPS ambiguity decorrelation,” Journal of Geodesy, Vol. 73, No. 9, pp. 478-490 (1999).
Mikhail, E. M., Observations and Least Squares, University Press of America, Lanham, Maryland, pp. 393-426 (1976).
Mohamed, A. H. and K. P. Schwarz, “A simple and economical algorithm for GPS ambiguity resolution on the fly using whitening filter,” Navigation, Vol. 45, No. 3, pp. 221-231 (1998).
Remondi, B. W., “Pseudo-kinematic GPS results using the ambiguity function method,” Navigation, Vol. 38, No. 1, pp. 17-36 (1991).
Snyder, J. P., “Map projections – a working manual,” U.S. Geological Survey Professional Paper 1393, Washington D. C.(1987).
Teunissen, P. J. G., “The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation,” Journal of Geodesy, Vol. 70, No. 1-2, pp. 65-82 (1995).
Teunissen, P. J. G. and A. Kleusberg, “GPS observation equations and positioning concepts,” In: Kleusberg, A. And P. J. G. Teunissen (eds), GPS for Geodesy, Lecture Notes in Earth Sciences, Vol. 60, No. 5, Springer-Verlag, Berlin, pp.175-217 (1996).
Teunissen, P. J. G., P. J. de Jonge and C. C. J. M. Tiberius, “Performance of the LAMBDA method for fast GPS ambiguity resolution,” Navigation, Vol. 44, No. 3, pp. 373-383 (1997).
Wu, J. and S. G. Lin, “Kinematic positioning with GPS carrier phases by two types of wide laning,” Navigation, Vol. 44, No. 4, pp. 471-477(1997).
Xu, P., “Random simulation and GPS decorrelation,” Journal of Geodesy, Vol. 75, No. 7-8, pp. 408-423 (2001).