跳到主要內容

簡易檢索 / 詳目顯示

研究生: 潘語之
Yu-chih Pan
論文名稱: 探討 Wnt3a調控 MyoD表現機制
Defining the pathways and responsive elements mediating Wnt3a activated MyoD promoter activity
指導教授: 陳盛良
Shen-liang Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 生醫理工學院 - 生命科學系
Department of Life Science
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 101
中文關鍵詞: 啟動子肌肉肌肉形成
外文關鍵詞: β-catenin
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 肌肉轉錄調控因子 (MRFs),其中包含 MyoD、Myf5、MRF4、Myogenin,是調控骨骼肌發育的主控因子。胚胎發育過程中,脊索與神經管分泌 Shh及 Wnts誘導體節的 MyoD與 Myf5表現,使肌肉開始發育。Wnts為分泌至胞外的一群醣蛋白,調控著增生、分化、不對稱分裂、決定細胞命運…等發育過程。Wnt訊息傳導有三條路徑:典型、非典型與Wnt/鈣離子路徑。近來的研究顯示,MyoD上游反應區域會調控其啟動子活性,但對於 Wnts調控 MyoD的轉錄活性機制尚未建立。本實驗室先前的數據指出,Wnt3a調控 MyoD的表現及其啟動子活性,需倚靠啟動子上游-20~-25 kb的遠端增強子 (Distal Enhancer)。為了進一步確認 Wnt3a如何調控 MyoD表現,首先,我們構築 MyoD 報導質體與啟動子上游各個不同區域的質體,欲建立一個系統,利於我們縮小區域並尋找出 Wnt3a的目標位。結果顯示,上游區域 (-9~-8 kb),不論是否與遠端增強子連結在一起,皆可以經由 Wnt3a的刺激而活化 MyoD啟動子的活性。其次,我們利用具特異性的抑制劑,欲抑制 Wnt3a下游傳導路徑,找出可能的傳導路徑。結果發現幾個路經皆參與其中,包括典型的Wnt/β-catenin路徑。Wnt3a藉由 β-catenin的刺激影響 MyoD的表現。這些觀察到的結果,我們藉由大量表現 Wnt訊息傳導下游路徑的顯性抑制影響因子 (Dominant negative effector),進一步得到證實。最後,我們利用了染色質免疫沉澱法,為探究在體內 β-catenin調控 MyoD表現的生理意義。結果發現,在 MyoD上游調控區域具有多個 β-catenin結合位,且結合的能力很強。總而言之,這些結果徹底地證明 Wnt3a訊號經由結合多個上游區域直接調控 MyoD表現。


    Myogenic regulatory factors (MRFs), which include MyoD, Myf5, MRF4 and Myogenin, are the master regulators of skeletal myogenesis. During embryogenesis, notochord and neural tube secrete Shh and Wnts to induce MyoD and Myf5 expression in somites to initiate myogenesis. Wnts are extracellular glycolipoproteins regulating several key developmental processes, such as proliferation, differentiation, asymmetric division, patterning, and cell fate determination, and they have three downstream pathways: canonical, non-canonical, and Wnt/ Ca2+ pathway. Recent researches had shown that upstream responsive elements of MyoD regulate its promoter activity, but how Wnts affect this regulation has not been established. Our previous data had shown that Wnt3a could regulate MyoD expression and its promoter activity when distal enhancer (-20~ -25k) was attached. To further identify how Wnt3a regulates MyoD expression, firstly MyoD reporter constructs containing various upstream regions were established for narrowing down the possible Wnt3a target site. Our data showed that an upstream region (-8~ -9k), whether linked to distal enhancer (~5k) or not, could mediate Wnt3a stimulated MyoD promoter activity. Secondly, using specific inhibitors of each pathway downstream to Wnt3a, we found that multiple pathways, including canonical pathway mediated by β-catenin, were mediating Wnt3a effect on MyoD expression. These observations were further confirmed by over-expressing dominant negative effectors of Wnt signaling pathways. Finally, the physiology relevance of β-catenin regulated MyoD expression in vivo was assessed by Chromatin Immunoprecipitation (ChIP) assay, and we found strong binding of β-catenin to multiple sites in the MyoD upstream regulatory region. Taken together, these results have soundly demonstrated the direct regulation of the MyoD expression by Wnt3a signaling through targeting multiple upstream cis-elements.

    目錄 中文摘要 VIII Abstract IX 誌謝 X 一、緒論 1 I. 肌肉發育(Muscle development) 1 胚胎發育 (Embryogenesis) 1 體節形成 (Somitogenesis) 2 肌肉形成 (Myogenesis) 2 II. 肌肉轉錄調控因子 (Myogenic regulatory factor, MRF) 3 生肌決定因子 (Myogenic Determination Factor1, MyoD) 3 MRF與肌肉發育之關係及其調控機制 4 III. Wnt signaling pathway 5 起源 5 訊息傳導路徑 6 Wnt與肌肉發育之關係 7 IV. 研究動機與目的 8 二、材料與方法 9 2-1細胞株 (Cell Line) 9 2-1-1選用細胞株 9 2-1-2穩定細胞株製備 9 2-1-3細胞培養 9 2-2質體構築 (Cloning) 10 2-2-1選用菌株 10 2-2-2菌株培養 10 2-2-3質體構築 10 2-2-4質體構築流程圖 16 2-3過渡性轉染作用 (Transient transfection) 21 2-4螢火蟲冷光活性測方法 (Luciferase Activity Assay) 22 2-5逆轉錄聚合酶鏈式反應 (Reverse Tanscription Polymerase Chain Reaction, RT-PCR) 22 2-5-1 Total RNA製備 22 2-5-2反轉錄作用 (Reverse transcription) 23 2-5-3聚合酶鏈反應 (Polymerase Chain Reaction , PCR ) 23 2-5-4即時聚合酶鏈反應 (Real Time Polymerase Chain Reaction , RT-PCR ) 24 2-6西方墨點法 (Western Blot) 24 2-6-1 Total protein lysate製備 25 2-6-2聚丙烯醯胺凝膠電泳 (SDS-polyacrylamide Gel Electropheresis) 25 2-6-3轉印 (Transfer) 25 2-6-4 Blocking 及抗體 (Antibody) 辨識 26 2-6-5 Antibody蛋白質脫附 (Stripping) 26 2-7染色質免疫沉澱 (Chromatin immunoprecipitation assay, CHIP) 27 三、實驗結果 30 3-1 驗證Wnt3a確實分泌至所收取的medium及其功能性 30 3-2 在不同時期的肌肉細胞,皆無 Wnt3a蛋白質表現 31 3-3 PME24521 (#9)與 PME2421 (#10)的片段與 PME組別相比沒有顯著的差異 32 3-4 Wnt canonical and non- canonical pathways皆會影響MyoD promoter之轉錄活性 33 3-5在in vivo的情況下,β-catenin對於 MyoD promoter上游調控區域具有很強的結合能力 34 3-6 大量表現 β-catenin有效的使 C2C12細胞在 CMB及 MT時期 MyoD mRNA表現量提高 35 3-7 MyoD promoter與enhancer間的距離會影響其轉錄活性 36 3-8 L fragment非經由 Wnt canonical and non- canonical pathways調控 MyoD gene轉錄活性 36 四、討論 38 4-1 MyoD Ehancer與 Promoter上游-9k~-8k區域,經由何種方式活化 MyoD promoter轉錄活性 38 4-2 Enhancer對於 MyoD promoter調控 39 4-3 Wnt3a調控 MyoD上游區域之機制在生理上有何意義 40 4-4 Serum starvation對於 Wnt3a secretion之影響 41 五、圖表 42 圖一、 293T-Py-Wnt3a的培養液含有 Wnt3a蛋白質且具有功能性 44 圖二、 構築不同片段小大之 Enhancer至 Pstable-MyoD6.0-Luc質體 45 圖三、 處理 293T-Py-Wnt3a後,PME#9、PME#10與 PME相比之轉錄活性並無顯著差異 47 圖四、 Wnt canonical and non- canonical pathways皆會影響 MyoD promoter之轉錄活性 50 圖五、在in vivo的情況下,β-catenin 對於MyoD promoter上游調控區域具有很強的結合能力 52 圖六、 大量表現 β-catenin有效的使 C2C12細胞在 CMB及 MT時期 MyoD mRNA表現量提高 55 圖七、MyoD promoter與enhancer間的距離會影響其轉錄活性 56 圖八、 PM-L非經由 Wnt canonical or non- canonical pathways調控 MyoD轉錄活性 58 六、參考文獻 61 七、附錄 65 附錄一、 65 附錄二、 68 附錄三、 70 附錄四、 72 附錄五、 77 附錄六、 78 附錄七、 81 附錄八、 82 附錄九、 83

    Asakura, A., Lyons, G.E., and Tapscott, S.J. (1995). The regulation of MyoD gene expression: conserved elements mediate expression in embryonic axial muscle. Developmental biology 171, 386-398.
    Barth, A.I., Pollack, A.L., Altschuler, Y., Mostov, K.E., and Nelson, W.J. (1997). NH2-terminal deletion of beta-catenin results in stable colocalization of mutant beta-catenin with adenomatous polyposis coli protein and altered MDCK cell adhesion. The Journal of cell biology 136, 693-706.
    Borello, U., Berarducci, B., Murphy, P., Bajard, L., Buffa, V., Piccolo, S., Buckingham, M., and Cossu, G. (2006). The Wnt/beta-catenin pathway regulates Gli-mediated Myf5 expression during somitogenesis. Development 133, 3723-3732.
    Bouillet, P., Oulad-Abdelghani, M., Ward, S.J., Bronner, S., Chambon, P., and Dolle, P. (1996). A new mouse member of the Wnt gene family, mWnt-8, is expressed during early embryogenesis and is ectopically induced by retinoic acid. Mechanisms of development 58, 141-152.
    Brack, A.S., Conboy, I.M., Conboy, M.J., Shen, J., and Rando, T.A. (2008). A temporal switch from notch to Wnt signaling in muscle stem cells is necessary for normal adult myogenesis. Cell stem cell 2, 50-59.
    Braun, T., and Gautel, M. (2011). Transcriptional mechanisms regulating skeletal muscle differentiation, growth and homeostasis. Nature reviews Molecular cell biology 12, 349-361.
    Brunelli, S., Relaix, F., Baesso, S., Buckingham, M., and Cossu, G. (2007). Beta catenin-independent activation of MyoD in presomitic mesoderm requires PKC and depends on Pax3 transcriptional activity. Developmental biology 304, 604-614.
    Chen, J.C., Love, C.M., and Goldhamer, D.J. (2001). Two upstream enhancers collaborate to regulate the spatial patterning and timing of MyoD transcription during mouse development. Developmental dynamics : an official publication of the American Association of Anatomists 221, 274-288.
    Christ, B., and Ordahl, C.P. (1995). Early stages of chick somite development. Anatomy and embryology 191, 381-396.
    Church, V.L., and Francis-West, P. (2002). Wnt signalling during limb development. The International journal of developmental biology 46, 927-936.
    Davis, R.L., Weintraub, H., and Lassar, A.B. (1987). Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51, 987-1000.
    Goldhamer, D.J., Brunk, B.P., Faerman, A., King, A., Shani, M., and Emerson, C.P., Jr. (1995). Embryonic activation of the myoD gene is regulated by a highly conserved distal control element. Development 121, 637-649.
    Gurpur, P.B., Liu, J., Burkin, D.J., and Kaufman, S.J. (2009). Valproic acid activates the PI3K/Akt/mTOR pathway in muscle and ameliorates pathology in a mouse model of Duchenne muscular dystrophy. The American journal of pathology 174, 999-1008.
    Hirsinger, E., Jouve, C., Malapert, P., and Pourquie, O. (1998). Role of growth factors in shaping the developing somite. Molecular and cellular endocrinology 140, 83-87.
    Hogan, P.G., Chen, L., Nardone, J., and Rao, A. (2003). Transcriptional regulation by calcium, calcineurin, and NFAT. Genes & development 17, 2205-2232.
    Horsley, V., Jansen, K.M., Mills, S.T., and Pavlath, G.K. (2003). IL-4 acts as a myoblast recruitment factor during mammalian muscle growth. Cell 113, 483-494.
    Hu, P., Geles, K.G., Paik, J.H., DePinho, R.A., and Tjian, R. (2008). Codependent activators direct myoblast-specific MyoD transcription. Developmental cell 15, 534-546.
    Ikeya, M., and Takada, S. (1998). Wnt signaling from the dorsal neural tube is required for the formation of the medial dermomyotome. Development 125, 4969-4976.
    James, R.G., Conrad, W.H., and Moon, R.T. (2008). Beta-catenin-independent Wnt pathways: signals, core proteins, and effectors. Methods in molecular biology 468, 131-144.
    Kablar, B., Krastel, K., Ying, C., Asakura, A., Tapscott, S.J., and Rudnicki, M.A. (1997). MyoD and Myf-5 differentially regulate the development of limb versus trunk skeletal muscle. Development 124, 4729-4738.
    Kablar, B., Krastel, K., Ying, C., Tapscott, S.J., Goldhamer, D.J., and Rudnicki, M.A. (1999). Myogenic determination occurs independently in somites and limb buds. Developmental biology 206, 219-231.
    Kassar-Duchossoy, L., Giacone, E., Gayraud-Morel, B., Jory, A., Gomes, D., and Tajbakhsh, S. (2005). Pax3/Pax7 mark a novel population of primitive myogenic cells during development. Genes & development 19, 1426-1431.
    Kim, C.H., Neiswender, H., Baik, E.J., Xiong, W.C., and Mei, L. (2008). Beta-catenin interacts with MyoD and regulates its transcription activity. Molecular and cellular biology 28, 2941-2951.
    Korzh, V. (2008). Winding roots of Wnts. Zebrafish 5, 159-168.
    Ludolph, D.C., and Konieczny, S.F. (1995). Transcription factor families: muscling in on the myogenic program. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 9, 1595-1604.
    Maroto, M., Bone, R.A., and Dale, J.K. (2012). Somitogenesis. Development 139, 2453-2456.
    Menges, C.W., Sementino, E., Talarchek, J., Xu, J., Chernoff, J., Peterson, J.R., and Testa, J.R. (2012). Group I p21-activated kinases (PAKs) promote tumor cell proliferation and survival through the AKT1 and Raf-MAPK pathways. Molecular cancer research : MCR 10, 1178-1188.
    Nusse, R., van Ooyen, A., Cox, D., Fung, Y.K., and Varmus, H. (1984). Mode of proviral activation of a putative mammary oncogene (int-1) on mouse chromosome 15. Nature 307, 131-136.
    Olson, E.N., and Klein, W.H. (1994). bHLH factors in muscle development: dead lines and commitments, what to leave in and what to leave out. Genes & development 8, 1-8.
    Ott, M.O., Bober, E., Lyons, G., Arnold, H., and Buckingham, M. (1991). Early expression of the myogenic regulatory gene, myf-5, in precursor cells of skeletal muscle in the mouse embryo. Development 111, 1097-1107.
    Pirkmajer, S., and Chibalin, A.V. (2011). Serum starvation: caveat emptor. American journal of physiology Cell physiology 301, C272-279.
    Rao, T.P., and Kuhl, M. (2010). An updated overview on Wnt signaling pathways: a prelude for more. Circulation research 106, 1798-1806.
    Rhodes, S.J., and Konieczny, S.F. (1989). Identification of MRF4: a new member of the muscle regulatory factor gene family. Genes & development 3, 2050-2061.
    Rudnicki, M.A., Schnegelsberg, P.N.J., Stead, R.H., Braun, T., Arnold, H.H., and Jaenisch, R. (1993). Myod or Myf-5 Is Required for the Formation of Skeletal-Muscle. Cell 75, 1351-1359.
    Sabourin, L.A., and Rudnicki, M.A. (2000). The molecular regulation of myogenesis. Clinical genetics 57, 16-25.
    Sassoon, D., Lyons, G., Wright, W.E., Lin, V., Lassar, A., Weintraub, H., and Buckingham, M. (1989). Expression of two myogenic regulatory factors myogenin and MyoD1 during mouse embryogenesis. Nature 341, 303-307.
    Tran, T.H., Wang, X., Browne, C., Zhang, Y., Schinke, M., Izumo, S., and Burcin, M. (2009). Wnt3a-induced mesoderm formation and cardiomyogenesis in human embryonic stem cells. Stem cells 27, 1869-1878.
    von Maltzahn, J., Bentzinger, C.F., and Rudnicki, M.A. (2012). Wnt7a-Fzd7 signalling directly activates the Akt/mTOR anabolic growth pathway in skeletal muscle. Nature cell biology 14, 186-191.
    Willert, K., Brown, J.D., Danenberg, E., Duncan, A.W., Weissman, I.L., Reya, T., Yates, J.R., 3rd, and Nusse, R. (2003). Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423, 448-452.
    Yun, K., and Wold, B. (1996). Skeletal muscle determination and differentiation: story of a core regulatory network and its context. Current opinion in cell biology 8, 877-889.
    Yun, M.S., Kim, S.E., Jeon, S.H., Lee, J.S., and Choi, K.Y. (2005). Both ERK and Wnt/beta-catenin pathways are involved in Wnt3a-induced proliferation. Journal of cell science 118, 313-322.
    Zetser, A., Gredinger, E., and Bengal, E. (1999). p38 mitogen-activated protein kinase pathway promotes skeletal muscle differentiation. Participation of the Mef2c transcription factor. The Journal of biological chemistry 274, 5193-5200.
    Zhang, H., Yu, C., Dai, J., Keller, J.M., Hua, A., Sottnik, J.L., Shelley, G., Hall, C.L., Park, S.I., Yao, Z., et al. (2014). Parathyroid hormone-related protein inhibits DKK1 expression through c-Jun-mediated inhibition of beta-catenin activation of the DKK1 promoter in prostate cancer. Oncogene 33, 2464-2477.
    Zhu, G., Wang, Y., Huang, B., Liang, J., Ding, Y., Xu, A., and Wu, W. (2012). A Rac1/PAK1 cascade controls beta-catenin activation in colon cancer cells. Oncogene 31, 1001-1012.

    QR CODE
    :::