| 研究生: |
高嘉文 Chia-wen Kao |
|---|---|
| 論文名稱: |
相變化材料於球形容器之儲熱實驗與分析 Experimental Investigation of Heat Storage for Phase-Change-Material in a Spherical Container |
| 指導教授: |
曾重仁
Chung-jen Tseng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 相變化材料 、熱阻 、儲熱槽 、潛熱 、囊 |
| 外文關鍵詞: | thermal storage tank, latent heat, capsule, phase change material, thermal resistance |
| 相關次數: | 點閱:5 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文利用熱阻觀念,做簡單的物理分析,推導出ㄧ維球形相變化儲熱
材料熱傳方程式,並配合實驗驗證方程式的可靠度。在熱阻分析時,
假令固態相變化材料利用潛熱所吸收之熱量,等於外界工作流體所帶
進來的熱,並考慮「工作流體─球囊外壁」、「球囊外壁─球囊內壁」
以及「球囊內壁─液態相變化材料」三種熱阻,並以串聯方式進行系
統分析。其中忽略球囊殼的熱容效應,且液態相變化材料傳熱方式分
成純熱傳導與考慮熱對流兩種。
由結果發現影響儲熱時間之參數有球囊設計、相變化材料性質參
數以及工作流體性質參數。經由參數分析發現,工作流體性質中,隨
著工作流體的Nu 增加,總儲熱時間就會下降。球囊設計參數中,藉
由增大球殼熱傳導係數來縮小球殼與液態相變材料熱傳導係數之比值,能夠縮短系統儲熱時間。
並且要預估總融化時間,可以藉由液態相變化材料熱阻考慮熱對
流方程式來估算。若要知道確切融化位置,當融化位置係數>0.37 時,
使用液態相變化材料熱阻只考慮熱傳導方程式;當融化位置係數
<0.37 時,使用液態相變化材料熱阻考慮熱對流方程式。
This study analyzes one-dimensional spherical phase change material
(PCM) heat transfer formula which derives from the concept of thermal
resistance. The viability of this formula is validated by experimental data.
In the analysis of thermal resistance, the heat which absorb by PCM is
assumed equal to the heat which transfer from the heat transfer fluid
(HTF). In the system, there are three types of thermal resistance in series
connection, including HTF to capsule outside surface, capsule outside
surface to inside surface, and capsule inside surface to PCM. Due to the
specific heat of capsule is very small, the sensible heat of capsule is
neglected. The heat transfer within liquid PCM is considered as two
different types – only conduction and only convection.
As the results, the parameters which affect the melting time include
size and thickness of capsule, and thermal physical properties of capsule,
PCM, and HTF. By the parameter analysis, the melting time is reduced as
the Nusselt number of HTF is increasing, and the thermal conductivity of
capsule is enhanced.
To predict the melting time, it has good agreement by using the heat
transfer formula with considering convection. To predict the melting
surface location, when the melting location coefficient is larger than 0.37,
using the heat transfer formula without considering convection has good
agreement. But when the melting location coefficient is smaller than 0.37,
using the heat transfer formula with considering convection has good
agreement.
1. htp://www.moeaboe.gov.tw/opengovinfo/Plan/all/WorkStatisticsAll.aspx
2. 2007 年能源科技研究發展白皮書,經濟部能源局,2007 年12 月。
3. Gliick, A., “Development and Testing of Advanced TES Materials for
Solar Thermal Central Receiver Plants,” Proceedings Solar World
Congress, Vol. 2, No.1, pp. 943-948, 1991.
4. Schossig, P., Henning, H. M., and Gschwander, S., “Micro-Encapsulated
Phase-Change Materials Integrated into Construction Materials,”
Journal of Solar Energy Engineering, Vol. 89, pp.297-306, 2005.
5. http://www1.eere.energy.gov/solar/csp_industry_projects.html#thermal
6. http://www1.eere.energy.gov/solar/thermal_storage.html
7. Sharma, A., Tyagi,V. V., Chen, C. R. and Buddhi, D. “Review on
Thermal Energy Storage with Phase Change Materials and
Applications,” Renewable and Sustainable Energy Reviews, pp, 318-345,
2007.
8. McDonald, T. W., Hwang, K. S., and Diciccio, R., “Thermosiphon Loop
Performance Characteristics: Part 1. Experimental Study,” Trans.
ASHRAE, Vol. 83, pp. 250-259, 1977.
9. Lorsch, H. G., “Thermal Energy Storage for Solar Heating” American
Society of Heating,Refrigeratimg and Air-Conditioning Engineering
Journal, Vol 17, pp.47-52,1975.
10. Loef, G. O. G., “Cost of House Heating with Solar System,” Solar
Energy, Vol 14, pp. 253-278, 1973.
11. Alva, L. H. S., Gonzalez, J. E., and Dukhan, N., “Initial Analysis of
PCM Integrated Solar Collectors,” Journal of Solar Energy Engineering,
4 9
Vol. 128, No. 2, pp.173-177, 2006.
12. Fatih, D. M., “Thermal Energy Storage and Phase Change Materials: An
Overview,” Energy Sources, Part B: Economics, Planning and Policy,
Vol. 1, No. 1, pp. 85-95, 2006.
13. Tamme, R., Tant, U., and Streuber, C., “Energy Storage Development
for Solar Thermal Process,” Solar Energy Materials and Solar Cells, Vol.
24, No. 1, pp. 386, 1991.
14. Notter, W., Lechner, T., and Grob, U., “Thermophysical Properties of
The Composite Ceramic-Salt System(SiO2/Na2SO4),”Thermochimica
Acta, Vol. 218, pp. 445-453, 1993.
15. Notter, W., and Hahne E., “Thermal Expansion Models for
Polycrystalline Salt-Ceramics,” Thermochimica Acta, Vol. 290, No. 1,
pp. 93-100, 1996.
16. Alexiades, V., and Solomon, A. D., Mathematical Modeling and
Freezing Processes, Hemisphere, Washington, DC, 1993.
17. Lane, G., Solar Heat Storage: Latent Heat Material, CRC Press, Boca
Raton, FL, United States, 2008.
18. Bedecarrats, J. P., Strub, F., Falcon, B., and Dumas, J.P., “Experimental
and Numerical Analysis of The Supercooling in a Phase Change Energy
Storage.” International Congress of Refrigeration, Vol. III a, Hague,
Netherlands; 20–25 August. pp. 46–53, 1995.
19. Ian, W., Eames, A., Kamel, T. and Adref, B., “Freezing and Melting of
Water in Spherical Enclosures of The Type Used in Thermal (Ice)
Storage Systems,” Applied Thermal Engineering, Vol.22, pp. 733–745,
2002.
5 0
20. Assis, E., “Numerical and Experimental Study of Melting in a Spherical
Shell,” Internation Journal of Heat and Mass Transfer ,Vol. 50, pp.
1790-1804, 2007.
21. Ismail, K. A. R. and Moraes, R. I. R., “A Numerical and Experimental
Investigation of Different Containers and PCM Options for Cold Storage
Modular Units for Domestic Applications,” Heat and Mass Transfer,
Vol.52, pp. 4195-4202, 2009.
22. Velraj, R., Seeniraj, R.V., Hafner, B., Faber, C., and Schwarzer, K.
“Experimental Analysis and Numerical Modeling of Inward
Solidification on a Finned Vertical Tube for a Latent Heat Storage Unit.”
Soarl Energy; Vol.60, pp. 281-290, 1997.
23. Velraj, R., Seeniraj, R.V., “Heat Transfer and Parametric Studies of an
Internally Finned LHTS Via an Enthalpy Model,” Journal of Heat
Transfer , Vol.121, pp. 493, 1999.
24. Hafner, B., and Schwarzer, K., “Improvement of the Heat Transfer in a
Phase-Change-Materials Storage,” In Proceedings of the 4th Workshop of
IEA ECES IA Annex 10, Bendiktbeuern, Germany, 1999.
25. Kaygusuz, K., “The Viability of Thermal Energy Storage,” Energy
Sources, Vol. 21 Issue 8, pp. 745-755, 1999.
26. Konev, S. V., Wang, J. L., and Tu, C. J., ”Characteristics of a Heat
Exchanger Based on a Collector Heat Pipe,” Heat Recovery System &
CHP, Vol. 15, No. 5, pp 493-502, 1995.
27. Marshall, R., “A Generalised Steady State Collector Model Including
Pipe Losses, Heat Exchanger, and Pump Power,” Solar Energy, Vol. 66,
No. 6, pp. 469-477, 1999.
28. Cheng, K. C. and Lee, C. A., “Heat Transfer Characteristics of a
5 1
Closed-Loop Two-Phase Thermosiphon System for Solar Collector
Applications,” the 5th IHPC, Vol. 3, pp. 25-33, 1984.
29. Kaya, T. and Hoang, T. T., “Mathematical Modeling of Loop Heat Pipes
and Experimental Validation,” Journal of Thermaphysics and Heat
Transfer, Vol. 13, pp. 67-234, 1999.
30. Yun, S., “Design and Test Results of Multi-Evaporator Loop Heat Pipes”,
International Conference On Environmental Systems, July 1999, Denver,
CO, USA, pp. 1999-01-2051-pp. 1999-01-2052, 1999.
31. Nallusamy, N., Sampath, S., and Velraj, R., “Experimental Investigation
on a Combined Sensible and Latent Heat Storage System Integrated
with Constant/Varying (solar) Heat Sources,” Renewable Energy, Vol. 32,
Issue 7, pp. 1206-1227, 2007.
32. Nagano, K., “Experiments on Fin-Effects for Increasing Heat Transfer
Coefficients During Charging Heat and Heat Release Between PCMs
and Thermal Medium.” Arvika (Sweden): The IEA Annex 17 Workshop,
2004.
33. Kenisarin, M., and Mahkamov K., “Solar energy storage using phase
change material,” Renewable and Sustainable Energy Reviews, Vol. 11,
pp. 1913-1965, 2007.
34. Dhifaoui, B., Jabrallah, S. B., and Belghith, A., Corriou, J. P.,
“Experimental Study of the Dynamic Behavior of a Porous Medium
Submitted to a Wall Heat Flux in View of Thermal Energy Storage by
Sensible Heat” International Journal of Thermal Sciences, Vol 46, pp.
1056-1063, 2007.
35. Snaith, B., P. W. O’Callaghan, and S.D. Probert, Applied energy, Vol.16,
pp.175, 1984.
5 2
36. Madhusudana, C. V., and Fletcher L. S., AIAA J., Vol.24, pp.510, 1986.
37. Yovanovich, M. M., “Recent Development in Thermal Contact, Gap and
Joint Conductance Theories and Experiment,” in C. L. Tien, V. P. Carey,
and J. K. Ferrel, Eds., Heat Transfer-1986, Vol. 1, Hemisphere, New
York, pp. 35-45, 1986.
38. Weber, N., Powe, R. E., Bishop, E. H., and Scanlan, J, A.,“Heat Transfer
by Natural Convection between Vertically Eccentric Spheres,” Journal
of Heat Transfer, Vol. 95, pp. 47-52, 1973.
39. Churchill, S.W. “Free convection around immersed bodies. In:
Schlunder EU,editor. Heat exchanger design book.” New York:
Hemisphere Publishing, pp. 2.5.7, 1983.