跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張智中
Chih-Chung Chang
論文名稱: 以溶膠-凝膠法製備有機無機混成相轉移材料微膠囊
Preparation of Phase Change Materials Microcapsules by Using PMMA Network-Silica Hybrid Shell via Sol-Gel Process
指導教授: 陳暉
Hui Chen
林耿慧
Keng-Hui Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 94
語文別: 中文
論文頁數: 101
中文關鍵詞: 相轉移材料溶膠-凝膠法微膠囊
外文關鍵詞: microcapsule, phase change material, sol-gel process
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討以熔點28℃之正十八烷相轉移材料為核物質,PMMA架橋體-二氧化矽混成材料為殼層之微膠囊的製備方法與條件。首先探討三種合成方式製備PMMA架橋體之微膠囊。之後再將預聚合液與TEOS經過事先的混合後作為油相,以懸浮聚合法為基礎製備出相轉移材料微膠囊。TEOS在酸性環境之下與分散相中的水行溶膠凝膠法反應。所得之微膠囊潛熱值與正十八烷之含量以DSC量測,微膠囊中二氧化矽殘餘量及其熱性質以TGA分析,微膠囊之粒徑大小與表面結構則由SEM觀察。
    實驗結果顯示,單獨使用PMMA預聚合液才可成功製備出相轉移材料微膠囊。當預聚物添加TEOS時,產物之潛熱值為151 J/g,比未加TEOS時之微膠囊潛熱值88.3 J/g要來得高出許多。此微膠囊之平均粒徑約在10μm。「熟成」指的是在反應過後將產物於某個溫度下靜置不同的天數,此一步驟能增加Si-O-Si之鍵結與改變產物之表面結構。隨著熟成時間與溫度之不同,所得微膠囊之二氧化矽殘餘量、正十八烷之含量與潛熱值皆會有所不同。TEOS的增加對於微膠囊之包覆量與潛熱值並無明顯的幫助,最高的潛熱值178.9 J/g出現在無機含量為5 wt%時。帶有不同官能基之矽偶合劑對於微膠囊之包覆量也無明顯幫助,當添加不同矽偶合劑時,微膠囊之潛熱值反而會從180.5 J/g分別下降至135.9 ~ 165.7 J/g,而正十八烷之含量則從原本的74%分別下降至55.7 ~ 67.9%。為縮小微膠囊之粒徑,添加不同濃度之界面活性劑Tween 60,隨著界面活性劑之添加,雖然能有效降低微膠囊之粒徑,但微膠囊之潛熱值與包覆量亦隨之降低。


    Encapsulation of phase change materials (PCMs) by using poly(methyl methacrylate) (PMMA) network-silica hybrid as the shell material has been developed. n-Octadecane melted at 28℃ was used as PCMs. First three kinds of methods, preparation of PCMs microcapsules by using PMMA network as the shell material, were discussed. Then PCMs microcapsules were prepared based on suspension by mixing and reacting of ethylene glycol dimethacrylate (EGDMA) and precopolymer solution with tetraethoxysilane (TEOS). TEOS was reacted with water supplied by disperse phase in acid condition to obtain PMMA-Silica hybrid via the sol-gel process. Latent heat and n-octadecane content of PCMs microcapsules were characterized by differential scanning calorimeter (DSC). Residual silica content and the thermal properties of microcapsules were characterized by thermogravimetric analysis (TGA). Particle size and microcapsules morphology were analyzed by scanning electron microscope (SEM).
    The results showed that PCMs was able to be successfully encapsulated by using PMMA prepolymer solution. The microcapsules prepared by this precopolymer solution with adding TEOS had higher latent heat (ΔH=151 J/g) than those without adding TEOS (ΔH=88.3 J/g). The average size of PCMs microcapsules is about 10μm. After encapsulation, the ageing process, placed the products at the certain temperature for certain days, was able to increase Si-O-Si bonding and change surface structure of microcapsules. With increasing ageing time and ageing temperature of the ageing process, silica content, n-octadecane content and latent heat of microcapsules were changed. The highest amount of latent heat (ΔH=178.9 J/g) and n-octadecane content (73.3%) of microcapsule was obtained when the inorganic content of the microcapsule was 5 wt%. It is not effective in increasing n-octadecane content (74% to 55.7 ~ 67.9%) and latent heat (180.5 J/g to 135.9 ~ 165.7 J/g) of microcapsules by introducing different functional groups of silanes.

    目錄……………………………………………………………………..Ⅰ 表目錄…………………………………………………………………..Ⅲ 圖目錄………………………………………………………………..…Ⅳ 第一章 前言……………………………………......………........1 1-1 相轉移材料.............................................2 1-2 溶膠-凝膠法............................................8 1-3 微粒包覆技術...........................................16 1-4 實驗目的...............................................22 第二章 實驗................................................23 2-1 實驗藥品............................................24 2-2 實驗儀器...............................................25 2-3 有機殼層相轉移材料微膠囊之製備.........................26 2-3-1 一階段掺混包覆法.....................................26 2-3-2 兩階段掺混包覆法.....................................26 2-3-2-1 以單體行兩階段掺混包覆法...........................26 2-3-2-2 以預聚物行兩階段掺混包覆法.........................26 2-4 有機-無機混成殼層相轉移材料微膠囊之製備................27 2-5 相轉移材料微膠囊之物性測試.............................32 2-5-1 熱重損失分析儀測試...................................32 2-5-2 低溫微差掃描熱分析儀測試.............................32 2-5-3 相轉移材料微膠囊之表面微結構觀察.....................32 第三章 結果與討論..........................................33 3-1 相轉移材料之基本物性................................34 3-1-1相轉移材料之熱重損失分析...........................34 3-1-2相轉移材料之微差掃瞄熱分析.........................34 3-2 有機殼層相轉移材料微膠囊............................37 3-2-1 一階段掺混包覆法....................................37 3-2-2 以單體行兩階段掺混包覆法.............................38 3-2-3 以預聚物行兩階段掺混包覆法...........................39 3-2-4 架橋劑濃度對微膠囊之影響.............................49 3-3 有機-無機混成殼層相轉移材料微膠囊...................53 3-3-1 系統pH值對微膠囊之影響............................53 3-3-2 熟成時間及溫度對微膠囊之影響......................57 3-3-3 無機添加量對微膠囊之影響..........................68 3-3-3 矽偶合劑對微膠囊之影響............................74 3-4 界面活性劑濃度對微膠囊之影響........................81 第四章 結論................................................86 參考文獻...................................................88

    1. Hale, D. V.,Hoover, M. J. and O’Neill, M. J., “Phase Change
    Material Handbook,”NASA CR-61363 (1971)
    2. Mohammed M. Farid, Amar M. Khudhair, Siddique Ali K. Razack, Said Al-
    Hallaj, Energy Convers Mgmt, 45, 1597 (2004)
    3. Abhat A, Solar Energy, 30, 313 (1983)
    4. Belén Zalba, José M Marín, Luisa F. Cabeza, Harald Mehling, Appl.
    Therm. Eng, 23, 251 (2003)
    5. I. Dincer, M.A. Rosen, Thermal energy storage, Systems and
    Applications, John Wiley & Sons, Chichester (England), 2002.
    6. G.A. Lane, Int. J. Ambient Energy 1, 155 (1980)
    7. Hasnain SM, Energy Convers Mgmt, 39, 1127 (1998)
    8. 陳永志, 陳姿秀, 溶膠-凝膠法之應用與發展現況, 工業材料雜誌, 183, 115
    (2002)
    9. C.J. Brinker, D.E. Clark, D.R. Ulrich, Mat. Res. Soc, 151 (1988)
    10. R.Y. Sheinfain, I.E. Neiwmark, Absorption and Absorbents, 1, 87 (1973)
    11. 張光偉, 奈米材料(Nanomaterials)—有機-無機混成材料及其應用趨勢, 化工資
    訊, 3, 36 (1998)
    12. Yoldas, B.E., J. Mater. Sci, 14, 1843 (1979)
    13. Nogami, M.; Moriya, Y., J. Non-cryst. Solids, 37, 191 (1980)
    14. C.J. Brinker and G.W. Scherer, Sol-Gel Science: The Physics and
    Chemistry of Sol-Gel Processing, Academic Press, Inc.: New York (1990)
    15. K.D. Keefer, in: Silicon Based Polymer Science: A Comprehensive
    Resource; eds. J.M. Zeigler and F.W.G. Fearon, ACS Advances in
    Chemistry Ser, 224, 227, American Chemical Society: Washington, DC
    (1990)
    16. L. C. Klein, Ann. Rev. Mater. Sci, 15, 227 (1985)
    17. R. K. Iler, The Chemistry of Silica, Wiley, New York (1979)
    18. Nack, H., Microencapsulation Techniques, Applications and problems,
    J. Soc. Cosmetic Chemists, 21, 85 (1970).
    19. Sparks, R. E., Microencapsulation in Encyclopedia of Chemical
    Technology, 3rd Edition, Vol. 15, John Wiley & Sons, New York, 470
    (1981)
    20. Kydonieus, A.F. (ed.), Controlled Release Technologies : Methods,
    Theory, and Applications, Vol. I., CRC Press, Florida (1980)
    21. B. K. Green and L. Schleicher, U. S. Patent 2,730, 456 (1956)
    22. B. K. Green and L. Schleicher, U. S. Patent 2,730, 457 (1956)
    23. B. K. Green and L. Schleicher, U. S. Patent 2,730, 457 (1957)
    24. Z.Reyes and M. Park, U.S. Patent 3,173,878 (1965)
    25. Morishita, M., Inaba, Y., Fukushima, M., Kobari, S., Nagata, A., and
    Abe, J., Preparation of Microcapsules, U.S. Patent, 3,943,063 (1976).
    26. Watts P. J., Davies M. C. and Melia C.D., Microencapsulation Using
    Emulsification/Slovent Evaporation: An Overview of Techniques and
    Applicatins, Critical Reviews in Therqpeutic Drug Carrier Systems, 7,
    235 (1990).
    27. Chowdary, K. P. R., and Nageswara, R. G., Indian Drugs, 22, 381(1985)
    28. Chowdary, K. P. R. and Nageswara Rao, G., Studies on a New Technique
    of Microencapsulation: Part V. 1~/licroencapsulation of Aspirin by
    Ethylcellulose, Indian Drugs, 22, 479 (1985)
    29. Chowdary, K. P. R. and Suresh Babu, K. U. V., A Comparative
    Evaluation of Ethylcellulose, Gelatin and Calcium Alginate
    Microcapsules Prepared by Complex Emulsion Methods, Indian J. Pharm.
    Sci., May-June, 173 (1988)
    30. Pongpaibul, Y. and Withworth, C. W., Microencapsulation by Emulsion
    Non-Solvent Addition Method, Drug Dev. Ind. Pharm., 12, 2387 (1986)
    31. Pongpaibul, Y. and Withworth, C. W., Preparation and Invitro
    Dissolution Characteristics of Propranolol Microcapsules, Inter.
    Pharm., 33, 243 (1986)
    32. Kawashima, Y., Niwa, T., Handa, T., Takeuchi, H., Iwamoto, T. and
    Itph, K., J. Pharm. Sci, 78, 68 (1989)
    33. Shaikh, N. A., Abidi, S. E., and Block, L. H., Evaluation of
    Ethylcellulose as a Matrix for Prolonged Release Formulation, I. Water
    Soluble Drugs: Acetaminophen and Theophylline, Drug Develop. Ind.
    Pharm., 13, 1345 (1987)
    34. Kaeser Liard, B., Kissel, T., and Sucker, H., Manufacture of
    Controlled Release Formulatons by a New Microencapsulation Process,
    the Emusion-induction Technique, Acta Pharm. Technol., 30, 294 (1984)
    35. Chowdary, K. P. R. and Nageswara Rao, G., Studies on s New Technique
    of Microencapsulation by Ethylcellulose, Indian J. Pharm. Sci., Nov.-
    Dec.,213 (1984)
    36. Pongpaibul, Y., Price, J. C., and Whitworth, C. W., Paeparation and
    Evaluation of Controlled Release Indomethancin, Drug Develop. Ind.
    Pharm., 10,1597 (1984)
    37. Chowdary, K. P. R. and Nageswara Rao, G., Studies on a New Technique
    of Microencapsulation: Part V. 1~/licroencapsulation of Aspirin by
    Ethylcellulose, Indian Drugs, 22, 479(1985)
    38. Sprockel, O. L. and prapaitrakul, W., A Comparision of Micro
    encapsulation by Various Emulsion Techniques, Inter. J. Pharm., 58 123
    (1990)
    39. Lane G.A., Encapsulation of heat of fusion storage materials. In:
    Proceedings of 2nd Southeastern Conference on Application of Solar
    Energy, 442 (1976)
    40. Lane G.A., Low temperature heat storage with phase change materials.
    Int J Ambient Energy, 1, 155 (1980)
    41. Stark P., PCM-impregnated polymer microcomposites for thermal energy
    storage. SAE (Soc Automotive Eng) Trans, 99, 571 (1990)
    42. Sanjay K. Roy, S. Sengupta, Int. Comm. Heat Mass Transfer, 18, 495
    (1991)
    43. Y. Yamagishi, T, Sugeno, H. TaKeuchi, A. Pyatenko, N. Kayukawa,
    Proceedings of the International Conference on Offshore Mechanics and
    Arctic Engineering – OMAE, 10 (1998)
    44. J. S. Cho, A. Kwon, C. G. Cho, Colloid polm. Sci, 280, 260 (2002)
    45. M. N. A. Hawlader, M. S. Uddin, M. M. Khin, Applied Energy, 74, 195
    (2003)
    46. G. L. Zou, Z. C. Tan, X. Z. Lan, L. X. Sun, T. Zhang, Chinese
    Chemical Letters, 15, 6, 729 (2004)
    47. X. Z. Lan, Z. C. Tan, G. L. Zou, L. X. Sun, T. Zhang, Chinese Journal
    of Chemistry, 22, 5, 411 (2004)
    48. Zou G. L, Lan X. Z, Z. C. Tan, L. X. Sun, T. Zhang, Acta Physico-
    Chimica Sinica, 20, 1, 90 (2004)
    49. X. X. Zhang, Y. F. Fan, X. M. Tao, K. L. Yick, Materials Chemistry
    and Physics, 88, 300 (2004)
    50. X. X. Zhang, X. M. Tao, K. L. Yick, X. C. Wang, Colloid Polym, Sci,
    282, 330 (2004)
    51. X. X. Zhang, X. M. Tao, K. L. Yick, Y. F. Fan, J. Appl. Polym. Sci,
    97, 390 (2005)
    52. J. F. Su, L. Ren, L. X. Wang, Colloids Polym. Sci, 284, 224 (2005)
    53. L. X. Wang, J. F. Su, L. Ren, Polymeric Materials Science and
    Engineering, 21, 1, 276 (2005)
    54. B. Boh, E. Knez, Staresinic, J. Microencapsul, 22, 7, 715 (2005)
    55. Y. Shin, D. I. Yoo, K. Son, J. Appl. Polym. Sci, 96, 2005 (2005)
    56. Y. H. Tseng, M. H. Fang, P. S. Tsai, Y. M. Yang, J. Microencapsul,
    22, 1, 37 (2005)
    57. H. Schmidt, A. Kaiser, M. Rudolph, A. Lentz, Science of Ceramic
    Chemical Processing, eds. L. L. Hench and D. R. Ulrich, Wiley, New
    York, 87 (1986)

    QR CODE
    :::