| 研究生: |
許耀文 Yao-Wen Shiu |
|---|---|
| 論文名稱: |
高壓預混紊流燃燒最小引燃能量量測 Measurements of Minimum Ignition Energy for High-Pressure Premixed Turbulent Combustion |
| 指導教授: |
施聖洋
Shenqyang (Steven) Shy |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 引燃轉折 、最小引燃能量 、薄反應區與破碎狀反應區 、反應區Péclet數 、高壓 |
| 外文關鍵詞: | thin and broken reaction zones, reaction zone Péclet number, ignition transition, elevated pressure, Minimum ignition energy |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文針對壓力和紊流耦合效應對最小引燃能量(minimum ignition energy, MIE)之影響,進行定量量測和分析研究,進而提出一物理模式來解釋實驗結果。以貧油甲烷/空氣(當量比? = 0.6) 為預混燃氣,利用本實驗室已建立之大型高壓雙腔體設計之十字型預混紊流燃燒爐,使用平頭火花電極置於測試區中央處,以高功率脈衝產生器,定量控制中央火花放電電極之引燃能量,量測在層流和不同紊流條件下之MIE值。有關紊流之控制,乃由一十字型風扇擾動式內爐所提供,它置於一可吸收爆炸壓力之大型安全外爐內,在十字型內爐水平圓管底端兩側配置一對反向旋轉風扇與空孔板,可於十字型內爐中央區域產生一近似等向性紊流場,其平均速度幾可忽略,而方均根紊流擾動速度(u?)最高可達約8.42 m/s。我們也針對兩種計算MIE之統計方法,進行介紹和比較。實驗結果顯示,MIEL和MIET值均會隨壓力之增加而顯著下降,其中下標L與T分別代表層流與紊流時之值。如同在常壓條件下,我們發現引燃轉折現象也存在高壓條件下,即MIET/MIEL = ?值會先隨正規化紊流強度u?/SL值之增加而呈線性增加,但當u?/SL值大於某臨界值時,?值會呈現大幅驟升之變化,SL為層流燃燒速度。另外,我們也利用Schlieren紋影顯像技術觀測高壓紊流火核影像,用以瞭解引燃轉折前後之火核結構轉變。經引入一壓力修正因子,對先前在常壓時所獲得用以解釋常壓引燃轉折現象之物理模式,即火核反應區Péclet數(Pe)小於某臨界值Pec時?1 = 1 + c1Pe,而Pe > Pec時?2 = 1 + c2 (Pe4 –c3)進行修正,其中Pe = u??K/?RZ,即火核之紊流與化學反應間擴散強弱之指標,?K為Kolmogorov長度尺度,?RZ為以平均溫度Tm所估算之反應區熱擴散係數;所修正後之物理模式,可表述為當Pe* < Pe*c時,?1 = 1 + c1Pe*,Pe* > Pe*c時?2 = 1 + c2 (Pe*4 –c3),其中經壓力修正之Pe* = Pe(p/p0)-1/4,p0 = 0.1 MPa。此修正後之物理模式可合理地解釋高壓引燃轉折之結果,此研究結果將對許多燃燒相關應用 (如內燃機等)有所助益。
This thesis quantitatively measures the coupling effects of pressure and turbulence on minimum ignition energies (MIE) following by a physical model to explain these results. Lean methane-air mixtures at the equivalence ratio ? = 0.6 are used because much higher MIE is required to ignite such lean mixtures. Experiments are carried out in an already-established high-pressure, double-chamber explosion facility and a high-power pulse generator is used to control ignition energies of a pair of spark-electrodes with flat ends having a gap of 1 mm to increase required MIE for high pressure measurements positioned at the centre of a large inner cruciform burner. The inner burner lodged in a huge high-pressure absorbing outer chamber is equipped with a pair of counter-rotating fans and perforated plates capable of generating intense near-isotropic turbulence with negligible mean velocities and roughly equal magnitudes of turbulent fluctuation velocities in all three directions where the root-mean-square turbulent fluctuating velocities (u?) can be up to 8.42 m/s. Two statistical methods used to estimate MIE are reviewed and compared. Results show that values of MIEL and MIET noticeably as pressure (p) increases, where the subscripts L and T represent laminar and turbulent values. It is found that, similar to obtained at p = 0.1 MPa, the increasing slopes of MIET/MIEL = ? curves under elevated pressure conditions (p = 0.1 and 0.3 MPa) change drastically from linear to exponential when values of u?/SL are greater than some critical values depending on p showing ignition transition, where SL is the laminar burning velocity. Moreover, the Schlieren imaging technique is used to acquire flame kernel images at high pressure turbulent conditions in attempt to distinguish the structure difference of flame kernels before and after ignition transition. Finally, by introducing a pressure correction, we can modify the previous model at normal pressure condition, such that all data curves obtained at different pressure conditions with different critical values of u?/SL can be collapsed roughly into a single curve. Our previous model (Shy et al. 2010 [10]) based on a reaction zone (ignition kernel) Péclet number, Pe = u??K/?RZ, is used to explain ignition transition, where ?K is Kolmogorov length scale and ?RZ is the thermal diffusivity at the surface of the ignition kernel estimated at the mean temperature between flame adiabatic and reactant temperatures. In it when Pe < Pec for the pre-transition, ? = 1 + a1Pe, while ? = 1 + a2 (Pe4 –b2) for the post-transition when Pe > Pec, where a1, a2 and b2 are experimental constants. The present pressure modified correction is: Pe* = Pe(p/p0)-1/4, where p0 = 0.1 MPa. Using Pe* to take the pressure effect into consideration, all MIET/MIEL data at various values of u?/SL up to 50 and under different pressure conditions (p = 0.1, 0.3, 0.5 MPa) can be represented by a single curve having two drastically different increasing slopes with increasing Pe*: ? = 1 + a1Pe*,before transition and ? = 1 + a2 (Pe*4 –b3) after transition. These results are useful in many industrial devices such as spark-ignition-engines and internal combustion engines.
[1] Lewis B., von Elbe G., Combustion, Flame and Explosions of Gases, Academic Press, London (1987).
[2] Maly, R., Vogel, M., “Initiation and Propagation of the Flame Fronts in Lean CH4-Air Mixtures by Three Modes of the Ignition Spark,” Proc. Combust. Inst. 17, 821-831 (1979).
[3] Kono, M., Hatori, K., Iinuma, K., “Investigation on Ignition Ability of Composite Sparks in Flowing Mixtures,” Proc. Combust. Inst. 20, 133-140 (1985).
[4] Ziegler, G.F.W., Wagner, E.P., Maly, R., “Ignition of Lean Methane-Air Mixtures by High Pressure Glow and ARC Discharges, Proc. Combust. Inst. 20, 1817-1824 (1984).
[5] Bradley, D., Lung, F. K. K., “Spark Ignition and the Early Stages of Turbulent Flame Propagation,” Combust. Flame 69, 71-93 (1987).
[6] Kono, M., Niu, K., Tsukamoto, T., Ujiie, Y., “Mechanical of Flame Kernal Formation Produced by Short Duration Sparks,” Proc. Combust. Inst. 22, 1643-1649 (1988).
[7] Ishii, K., Aoki, O., Ujiie, Y., Kono, M., “Investigation of Ignition by Composite Sparks under High Turbulence Intensity Conditions,” Symposium (International) on Combustion 24, 1793-1798 (1992).
[8] Huang, C. C., Shy, S. S., Liu, C. C., Yan, Y. Y., “A Transition on Minimum Ignition Energy for Lean Turbulent Methane Combustion in Flamelet and Distributed Regimes,” Proc. Combust. Inst. 31, 1401-1409 (2007).
[9] Shy, S. S., Shih, W. T., Liu, C. C., “More on Minimum Ignition Energy Transition for Lean Premixed Turbulent Methane Combustion in Flamelet and Distributed Regimes,” Combust. Sci. Technol. 180, 1735-1747 (2008).
[10] Shy, S. S., Liu, C. C., Shih, W. T., “Ignition Transition in Turbulent Premixed Combustion,” Combust. Flame 157, 341-350 (2010).
[11] Bane, S. P. M., Shepherd, J. E., Kwon, E., Day, A. C., “Statistical Analysis of Electrostatic Spark Ignition of Lean H2/O2/Ar Mixtures,” Int. J. Hydrogen Energy 36, 2344-2350 (2011).; Bane, S.P.M., “Spark Ignition: Experimental and Numerical Investigation with Application to Aviation Safety,” PhD dissertation, California Institute of Technology (2010) (http://thesis.library.caltech.edu/5868/1/thesis_SBane.pdf).
[12] Peters, N., Turbulent Combustion, Cambridge University Press, Cambridge (2000).
[13] Eckhoff, R. K., Ngo, M., Olsen, W., “On the Minimum Ignition Energy (MIE) for Propane/Air,” J. Hazardous Materials 175, 293-297 (2010).
[14] Horstmann, T., Leuckel, H., Maurer, B., Maas, U., “Influence of Turbulent Flow Conditions on the Ignition of Flammable Gas/Air-Mixtures,” Process Saf. Prog. 20, 215-224 (2001).
[15] Moorhouse, J., Williams, A., Maddison, T. E., “An Investigation of the Minimum Ignition Energies of Some C1 to C7 Hydrocarbons,” Combust. Flame 23, 203-213 (1974).
[16] Ballal, D. R., and Lefebvre, A. H., “The Influence of Flow Parameters on Minimum Ignition Energy and Quenching Distance,” Proc. Combust. Inst. 15, 1473-1481 (1975).
[17] Williamson, J. W., Marshall, A. W., “Characterizing the Ignition Hazard from Cigarette Lighter Flames,” Fire Saf. J. 40, 29-41 (2005).
[18] Boudier, P., Henriot, S., Poinsot, T., Baritaud, T., “A Model for Turbulent Flame Ignition and Propagation in Piston Engines,” Proc. Combust. Inst., 24, 503-510 (1992).
[19] Ballal, D. R., Lefebvre, A. H., “Ignition and Flame Quenching of Flowing Heterogeneous Fuel-Air Mixtures,” Proc. Combust. Inst. 18, 1737-1746 (1980).
[20] De Soete, G. G., “The Influence of Isotropic Turbulence on the Critical Ignition Energy,” Proc. Combust. Inst. 13, 735-743 (1971).
[21] Tromans, P. S., Furzeland, R. M., “An Analysis of Lewis Number and Flow Effects on the Ignition of Premixed Gases,” Proc. Combust. Inst. 21, 1891-1897 (1986).
[22] Kurdyumov, V., Blasco, J., Sánchez, A.L., Liñán, A., “On the Calculation of the Minimum Ignition Energy,” Combust. Flame 136, 394-397 (2004).
[23] Fisher, F.A., “Some Notes on Sparks and Ignition of Fuel,” Tech. Memo. NASA/TM-2000-210077, Washington (2000).
[24] Glassman, I., Yetter, R. A., Combustion, 4th ed., Academic Press, San Diego (2008).
[25] Loeb, L. B., Fundamental Processes of Electrical Discharge in Gases, John Wiley & Sons, New York (1939).
[26] Chen, Z., Burke, M. P. and Ju, Y., “On the Critical Flame Radius and Minimum ignition Energy for Spherical Flame Initiation,” Proc. Combust. Inst. 33, 1219-1226 (2011).
[27] Zeldovich, Y. B., Barenblatt, G. I., Librovich, V. B., Makhviladze, G.M., The Mathematical Theory of Combustion and Explosions., Consultants Bureau, New York (1985).
[28] Lian, P., Gao, X. and Mannan, M. S., “Prediction of Minimum Ignition Energy of Aerosols Using Flame Kernel Modeling Combined with Flame Front Propagation Theory,” J. Loss Prev. Process Ind. 25, 103-113 (2011).
[29] Borghi, R. “On the Structure and Morphology of Turbulent Premixed Flames”, Recent Advances in the Aerospace Sciences, Ed. C. Casci, 117?138, New York, Plenum (1985).
[30] Bray, K. N. C. “Turbulent Flows with Premixed Reactants”, Turbulent Reacting Flows, Eds. Libby, P. A. & Williams, F. A., 115?183, New York, Springer?Verlag (1980).
[31] Peters, N. “Laminar Flamelet Concepts in Turbulent Combustion”, Proc. Combust. Inst. 21, 1231?1250 (1986).
[32] Williams, F. A., Combustion Theory, 2nd ed., Addison?Wesley, Redwood City (1985).
[33] Fenn, J. B., “Lean Flammability Limit and Minimum Spark Ignition Energy. Commercial Fluids and Pure Hydrocarbons,” Ind. Eng. Chem. 43, 2865-2869 (1951).
[34] Ivanov, B. A. and Kogarko, S. M., “Ignition Energy of Pure Acetylene and Its Mixtures with Air at High Initial Pressures,” Combust. Explos. 1, 73-75 (1965).
[35] Ronney, P. D. “Effect of Gravity on Laminar Premixed Gas Combustion II: Ignition and Extinction Phenomena.” Combust. Flame 62, 121-133 (1985).
[36] Mass, U., Warnatz, J., “Ignition Processes in Hydrogen-Oxygen Mixtures,” Combust. Flame 74, 53-69 (1988).
[37] Kim, H. J., Chung, S. H. and Sohn, C. H., “Numerical Calculation of Minimum Ignition Energy for Hydrogen and Methane Fuels,” J. Mech. Sci. Technol. 18, 838-846 (2004).
[38] Lee, T. W., Jain, V. and Kozola, S., “Measurements of Minimum Ignition Energy by Using Laser Sparks for Hydrocarbon Fuels in Air: Propane, Dodecane, and Jet-A Fuel,” Combust. Flame 125, 1320-1328 (2001).
[39] Ballal D. R. and Lefebvre, A. H, “The Influence of Spark Discharge Characteristics on Minimum Ignition Energy in Flowing Gases,” Combust. Flame 24, 99-108 (1975).
[40] Ballal D. R. and Lefebvre, A. H, “Flame Quenching in Turbulent Flowing Gaseous Mixtures,” Symposium (International) on Combustion 16, 1689-1698 (1977).
[41] Ronney, P. D., “Laser versus Conventional Ignition of Flames,” Opt. Eng. 33, 510-521 (1994).
[42] Kono, M., Kumagai, S. and Sakai, T., “The Optimum Condition for Ignition of Gases by Composite Sparks,” Symposium (International) on Combustion 16, 757-766 (1977).
[43] Shy, S. S., Lin, W. J., Wei, J. C., “An Experimental Correlation of Turbulent Burning Velocities for Premixed Turbulent Methane-Air Combustion,” Proc. Roy. Soc. Lond. A 456, 1997-2019 (2000).
[44] Shy, S. S., Lin, W. J., Peng, K. Z., “High-Intensity Turbulent Premixed Combustion: General Correlations of Turbulent Burning Velocities in a New Cruciform Burner,” Proc. Combust. Inst. 28, 561-568 (2000).
[45] Shy, S. S., I, W. K., Lin, M. L., “A New Cruciform Burner and its Turbulence Measurements for Premixed Turbulent Combustion Study,” Exp. Therm. Fluid Sci. 20, 105-114 (2000).
[46] Yang, T. S., Shy, S. S., Chyou, Y. P., “Spatiotemporal Intermittency Measurements in a Gas-Phase Near-Isotropic Turbulence Using High-Speed DPIV and Wavelet Analysis,” J. Mech. 21, 157-169 (2005).
[47] Yang, T. S., Shy, S. S., “Two-Way Interaction between Solid Particles and Homogeneous Air Turbulence: Particle Settling Rate and Turbulence Modification Measurements,” J. Fluid Mech. 526, 171-216 (2005).
[48] Liu, C. C., Shy, S. S., Chen, H. C., Peng, M. W., “On Interaction of Centrally-Ignited, Outwardly-Propagating Premixed Flames with Fully-Developed Isotropic Turbulence at Elevated Pressure,” Proc. Combust. Inst. 33, 1293-1299 (2011).
[49] Liu, C. C., Shy, S. S., Chiu, C. W., Peng, M. W., Chung, H. J., “Hydrogen/Carbon Monoxide Syngas Burning Rates Measurements in High-Pressure Quiescent and Turbulent Environment,” Int. J. Hydrogen Energy 36, 8595-8603 (2011).
[50] Shapiro, A. H., The Dynamics and Thermodynamics of Compressible Fluid Flow 1, Ronald Press (1953).
[51] Kuffel, E., Zaengl, W. S., Kuffel, J., High Voltage Engineering: Fundamentals, 2nd ed., Newnes (2000).
[52] Law, C. K., Combustion Physics, Cambridge University Press, New York (2006).