| 研究生: |
林鈞仁 Chun-Jen Lin |
|---|---|
| 論文名稱: | A Study on the Minimum Area of Rectilinear Polygons Realized by Turn Sequences |
| 指導教授: |
何錦文
Chin-Wen Ho 高明達 Ming-Tat Ko |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 資訊工程學系 Department of Computer Science & Information Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 49 |
| 中文關鍵詞: | 直角多邊形 、頂點角度序列 、最小面積 、凸多邊形 |
| 外文關鍵詞: | rectilinear polygon, turn sequence, minimum area, monotone |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們考慮以其頂點角度之序列,來重建最小面積直角多邊形的問題。我們提出以下兩個結果:
1. 研究n 點的最小面積直角多邊形的性質,並以此性質將之分為四類,以及算出其中三類多邊形的個數。
2. 給定一直角凸多邊形之角度序列S,我們提出一計算其最小面積之公式。
In this thesis, we consider the problem of reconstructing rectilinear polygons with minimum area, from a sequence of angles of vertices.
We provide two results:
1. Studying properties of n-vertex rectilinear polygons with minimum area, classifying those polygons into four types by these properties, and computing the number of polygons in each of three of them.
2. Given a sequence S of angles of a monotone rectilinear polygon, we propose a formula to compute the minimum of area of monotone rectilinear polygons with turn sequence S.
[1] Bajuelos, A.L., Tomas, A.P., Marques, F.: Partitioning Orthogonal Polygons by
Extension of All Edges Incident to Re
ex Vertices: Lower and Upper Bounds on
the Number of Pieces. In: Lagana, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan,
C.J.K., Gervasi, O. (eds.) ICCSA 2004. LNCS, vol. 3045, pp. 127-136. Springer,
Heidelberg (2004)
[2] Biedl, T., Durocher, S., Snoeyink, J.: Reconstructing polygons from scanner data.
Theoretical Computer Science 412, 4161-4172 (2011)
[3] Chen, D.Z., Wang, H.: An improved algorithm for reconstructing a simple polygon
from its visibility angles. Computational Geometry: Theory and Applications 45,
254-257 (2012)
[4] Disser, Y., Mihalak, M., Widmayer, P.: Reconstructing a simple polygon from its
angles. Computational Geometry: Theory and Applications 44, 418-426 (2011)
[5] O'Rourke, J.: An alternate proof of the rectilinear art gallery theorem. Journal of
Geometry 21, 118-130 (1983)
[6] O'Rourke, J.: Uniqueness of orthogonal connect-the-dots. In: Toussaint, G.T. (ed.)
Computational Morphology, pp. 97-104 (1988)
[7] Pick, Georg.: \Geometrisches zur Zahlenlehre". Sitzungsberichte des deutschen
naturwissenschaftlich-medicinischen Vereines fur Bohmen \Lotos" in Prag. (Neue
Folge) 19: 311-319 (1899)
[8] Sang Won Bae, Yoshio Okamoto, and Chan-Su Shin: Area bounds of rectilinear
polygons realized by angle sequences. Proceedings of 23rd International Symposium
on Algorithms and Computation (ISAAC 2012), Lecture Notes in Computer Science
7676 (2012)