跳到主要內容

簡易檢索 / 詳目顯示

研究生: 謝佾儒
Yi-ru Hsieh
論文名稱: 表面電漿共振儀之動態相位偵測技術 與微量生物分子檢測應用
Dynamic Phase-Acquisition Technique and Low-Abundance Biomolecule Detection of a Surface-Plasmon-Resonance System
指導教授: 李正中
Cheng-Chung Lee
陳怡君
Yi-Chun Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 99
語文別: 中文
論文頁數: 123
中文關鍵詞: 表面電漿共振系統胎兒纖維結合素
外文關鍵詞: Fetal fibronectin, Surface-Plasmon-Resonance system
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以研究團隊所研製之相位式表面電漿共振儀為基礎,開發動態相位偵測技術以提升系統折射率解析度後,並著手進行生物分子的實驗量測。目前,本系統之相位偵測穩定度在2000秒內可達0.5859度,所對應的系統折射率解析度為 RIU(Refraction Index Unit)。以本系統進行胎兒纖維結合素之抗體抗原專一性鍵結相位檢測,當抗原濃度為50 、2.5 、1.25 時,其相位變化分別為3.0154度、1.0613度、9.729度,並由四層結構系統進行數值擬合,擬合之結果得濃度為50 時,鍵結等效折射率為1.33318,等效厚度為10.81 nm;濃度為2.5 時,擬合之等效折射率為1.33297,等效厚度為10.43 nm;濃度為1.25 時,擬合之等效折射率為1.33227,等效厚度為9.84 nm。可知相位訊號、等效折射率及等效厚度均隨抗原濃度變化,有機會經由系統校正程序獲得關係曲線後,應用此系統進行抗原濃度檢測。


    In this thesis, a dynamic phase-detection technique was developed to improve the refractive-index resolution of a surface-plasmon-resonance system previously built in the research group. After examining the system stability, biological molecule measurements were performed. The phase-detection stability was 0.5859 degree in 2000-second period, and the corresponding refractive-index resolution was 1.3×10-5 RIU (Refraction Index Unit). This system was applied to antibody-antigen binding experiments of fetal fibronectin. With antigen concentrations of 50 ng/ml, 2.5 ng/ml, and 1.25 ng/ml, the phase changes were 3.0154, 1.0613 and 9.729 degrees, respectively. Considering a four-layer Kretschmann configuration, the equivalent thickness and the equivalent refractive index of the antibody-antigen binding layer were found by numerical fitting. For the concentration of 50 ng/ml, the equivalent refractive index was 1.33318 RIU and the equivalent thickness was 10.81 nm. For the concentration of 2.5 ng/ml, the equivalent refractive index was 1.33297 RIU and the equivalent thickness was 10.43 nm. For the concentration of 1.25 ng/ml, the equivalent refractive index was 1.33227 RIU and the equivalent thickness was 9.84 nm. As the phase signal, the equivalent refractive index and the equivalent thickness vary with the antigen concentrations, it is possible to obtain their relation curves through calibrations and then apply the system to determinations of the antigen concentration.

    摘要 I ABSTRACT II 誌謝 III 目錄 V 圖目錄 VIII 表目錄 XIV 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 生物感測器-表面電漿共振儀 2 1.2.2 SPR 免疫檢測技術 8 1.2.3 胚胎纖維蛋白質 10 1.3 研究動機 11 1.4 論文架構 11 第二章 表面電漿原理 13 2.1 表面電漿之色散關係式 14 2.2 SPR 產生方式 18 2.3 Kretschmann 組態-SPR 反射率及相位演算 21 2.3.1 兩層介質系統之反射係數 21 2.3.2 三層介質系統之反射係數 24 2.3.3 四層結構系統 27 2.4 小結 28 第三章 光學解相理論與系統架構 29 3.1 光學干涉術原理 29 3.2 相移干涉術 32 第四章 相位式表面電漿共振儀 36 4.1 相位式表面電漿共振儀 36 4.2 表面電漿共振儀架構 43 4.3 PZT回饋控制 48 4.4 感測片設計 52 4.5 程式設計 60 第五章 實驗方法與實驗結果分析 67 5.1 實驗藥品 67 5.2 實驗方法 68 5.2.1 PBS 緩衝液配製 68 5.2.2 蛋白質配製 68 5.2.3 活性劑配製 68 5.2.4 牛血清蛋白配製 69 5.2.5 SPR 裝置 69 5.2.6 胎兒纖維蛋白質抗體固定化 70 5.3 實驗結果討論與模擬分析 72 5.3.1 實驗一 P極化光的量測 72 5.3.2 實驗二 Open-Mode系統穩定度量測 75 5.3.3 實驗三 Close Mode 系統穩定度量測 93 5.3.4 實驗四 純水交換PBS系統相位變化量測 94 5.3.5 實驗五 胎兒纖維結合素抗體抗原專一性鍵結實驗 97 第六章 結論 103 參考文獻 104

    [1] R. W. Wood, On remarkable case uneven distribution of light in a diffraction grating spectrum, Phil. Magm., vol. 4, pp. 396-402 (1905).
    [2] R. H. Ritchie, Plasma losses by fast electron in thin films, Phys. Rev., vol. 106, pp. 640-643(1957).
    [3] J. Powell and J. B. Swan, Effect of oxidation on the characteristics loss spectra of alumimum and magnesium, Phys Rev, vol. 118, pp. 640-643 (1960).
    [4] K. Welford, The method of attenuated total reflection, Instit. Phys., pp. 25-78 (1987).
    [5] A. Otto, Excitation of surface plasma waves in silver by the method of frustrated total reflection, Z. Physik, vol. 216, pp. 398-410 (1968).
    [6] E. Krestschmann, The determination of the optical constants of metals by excitation of surface plasmons, Z. Phys, vol. 241, pp. 313-32 (1971).
    [7] Z. Salamon, H. A. Macleod, and G. Tollin, Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein system. II:Applications to biological systems, BBA-Bioenergetics, vol. 1331, pp. 131-152 (1997).
    [8] P. I. Nikitin, A. A. Beloglazov, and V. E. Kochergin. e. al, Surface plasmon resonance interfreometry for biological and chemical sensing, Sensors Actuator B-Chem., vol. 54, pp. 43-50 (1999).
    [9] R. P. H. Kooyman, H. Kolkman, J. V. Gent, and J. Greve, Surface plasmon resonance immunosensors: sensitivity considerations, Anal. Chim. Acta, vol. 213, pp. 35-45 (1988).
    [10] J. Homola and S. S. Yee, Surface plasmon resonance senaors based on diffraction gratings and prism couplers: sensitivity comparison, Sensors Actuator B-Chem., vol. 54, pp. 16-24 (1999).
    [11] B. Liedberg, C. Nylander, and I. Lundstrom, Surface plasmon resonance for gas detection and biosensing, Sensors Actuator B-Chem., vol. 4, pp. 299-304, (1983).
    [12] M. A. Cooper, Optical biosensors in drug discovery, Nat. Rev. Drug. Discov., vol. 1, pp. 515-528 (2002).
    [13] C.J. Lockwood. and E. Kuczynski., Risk stratification and pathological mechanisms in preterm delivery, Paediatr Perinat Epidemiol, vol. 15 pp. 78-89 (2001).
    [14] http://www.ffntest.com/hcp/science_fetal/about_fetal.html.
    [15] M. M. G. Leeflang, J. S. Cnossen, J. A. M. van der Post, B. W. J. Mol, K. S. Khan, and G. ter Riet, Accuracy of fibronectin tests for the prediction of pre-eclampsia: a systematic review, Eur. J. Obstet. Gyn. R. B., vol. 133, pp. 12–19 (2007).
    [16] M. I. Tekesin, M. S. Marek, M. L. Hellmeyer, M. D. Reitz, and M. S. Schmidt, Assessment of Rapid Fetal Fibronectin in Predicting Preterm Delivery, Obstet. Gynecol., vol. 105, pp. 280-284 (2005).
    [17] V. Smith, D. Devane, C. M. Begley, M. Clarke, and S. Higgins, A systematic review and quality assessment of systematic reviews of fetal fibronectin and transvaginal length for predicting preterm birth, Eur. J. Obstet. Gyn. R. B., vol. 133, pp. 134-142 (2007).
    [18] H. Tan, S. W. Wen, X. K. Chen, K. Demissie, and M. Walker, Early prediction of preterm birth for singleton, twin and triplet pregnancies, Eur. J. Obstet. Gyn. R. B., vol. 131, pp. 132-137 (2007).
    [19] H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, Springer-Verlag, Berlin (1988).
    [20] 顏嘉宏, 表面電漿共振系統之相位擷取與分析, 國立中央大學光電科學與工程學系研究所碩士論文 (2009).
    [21] 邱國斌、蔡定平, 金屬表面電漿簡介, 物理雙月刊, 廿八卷二期 (2006).
    [22] 耿繼業、何建娃, 幾何與物理光電實驗, 儒林出版社 (2001).
    [23] D. Malacara, Optical Shop Testing, Wiley (2007).
    [24] P. Hariharan, B. F. Oreb, and T. Eiju, Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm, Appl. Opt., vol. 26, pp. 2504-2506 (1987).
    [25] C. L. Wong, H. P. Ho, T. T. Yu, Y. K. Suen, Winnie. W., Y. Chow, S. Y. Wu, W. C. Law, W. Yuan, W. J. Li, S. K. Kong, and C. Lin, Two-dimensional biosensor arrays based on surface plasmon resonance phase imaging, Apt. Opt., vol. 46, pp. 2325-2332 (2007).
    [26] http://www.physikinstrumente.com/en/products/prdetail.php?sortnr=1000100.
    [27] http://www.thorlabs.us/.
    [28] M. Daimon and A. Masumura, Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region, App. Opt., vol. 46, pp. 3811-3820 (2007).

    QR CODE
    :::