跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張士昱
Shyh-Yuh Chang
論文名稱: 易潮解無機氣膠含水特性之研究
指導教授: 李崇德
Chung-Te Lee
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 環境工程研究所
Graduate Institute of Environmental Engineering
畢業學年度: 90
語文別: 中文
論文頁數: 150
相關次數: 點閱:20下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • I
    氣膠含水特性在氣膠質量濃度量測、酸性沉降、雲霧形成機制、能見
    度衰減、氣候變遷與人體健康的議題中皆佔有顯著的影響地位。本研究以
    Lee and Hsu (1998)所發展的EA-TCD 氣膠含水量量測系統為基礎,使用氣
    相層析儀(GC)搭配熱導電偵測器(TCD)量測收集氣膠含水量。
    以GC-TCD法量測25℃下NaCl、Na2SO4、NH4NO3、(NH4)2SO4與NH4Cl
    純鹽類氣膠在相對溼度介於20%至90%間的增濕與降濕狀態下的含水量,
    本方法的精密度在±3%以內,此外GC-TCD 法與其他文獻量測結果的差異
    百分比與平均誤差分別小於±6%與±5%,顯示本方法可適用於無機氣膠含水
    特性的量測。在本文中, 以純鹽類氣膠含水特性量測結果評估
    ISORROPIA、AIM2 與GFEMN 熱力平衡模式的含水特性推估結果,結果
    顯示ISORROPIA 熱力平衡模式可準確推估大多數無機性純鹽類氣膠的含
    水特性,最適合使用於混合氣膠含水特性的探討。各種混合莫耳比下的
    NaCl-Na2SO4 與NH4NO3-NH4Cl 雙鹽類混合氣膠系統的共同潮解相對溼度
    (MDRH) 分別為74% 與54% ; 本文對於NaCl-Na2SO4-NaNO3 與
    NaCl-(NH4)2SO4-NH4NO3 三種鹽類混合氣膠的MDRH量測結果分別為70%
    與50%;在混合氣膠系統中的完全潮解相對溼度量測結果則顯示出與原始
    氣膠組成有關。NH4NO3 氣膠潮解相對溼度(DRH)與周圍溫度為反比的關
    II
    係,可由DRH 在15、25 與35℃下分別為68、62 與54%的量測結果加以
    證實。
    本文首次展現Na2CO3氣膠含水特性的量測數據,其DRH 與再結晶點
    相對溼度分別為78%與39%。此外,NaCl-Na2SO4雙鹽類混合氣膠系統內的
    eutonic 混合鹽組成,本文提出第一次的量測數據以說明eutonic 混合鹽組成
    應逼近於含有90%的NaCl 與10%的Na2SO4。至目前為止,文獻對於氣膠
    含水特性複雜的三種鹽類混合氣膠僅有非常稀少的量測數據,本文不僅可
    以提供不同物種組成與混合比例的三種鹽類混合氣膠含水特性的量測結
    果,並探討量測結果與模式推估結果的差異性,有助於瞭解此種混合氣膠
    系統的含水特性。最後,本文應用GC-TCD 法量測大氣氣膠的含水特性,
    顯示在相對溼度介於62 至77%之間,氣膠含水量在大氣細粒徑氣膠的質量
    組成中約佔有19 至41%的比例。


    III
    Abstract
    Hygroscopic aerosols play a significant role in atmospheric phenomena
    such as aerosol mass change, acidic precipitation, formation of clouds and fogs,
    changes in visibility, climate change, and human health assessment. This work
    presents a gas chromatographic method that uses a thermal conductivity detector
    (GC-TCD) to measure the liquid water mass (LWM) of collected aerosols. The
    method is a modification of the previously developed EA-TCD method (Lee and
    Hsu, 1998).
    The aerosol LWMs of NaCl, Na2SO4, NH4NO3, (NH4)2SO4 and NH4Cl
    were measured at 25℃ under relative humidities (RHs) varying between 20%
    and 90%, in both deliquescence and efflorescence conditions. The precision of
    this method is within ±3%. In addition, the deviation and average error of
    GC-TCD method compared with other literature’s data are within ±6% and ±
    5%, respectively. In this work, the performance of the ISORROPIA, AIM2 and
    GFEMN thermodynamic models are compared with the measurements. The
    results indicate ISORROPIA model, a thermal equilibrium model for predicting
    the hygroscopic characteristics of most pure-salt inorganic aerosols, is the best
    and is adopted for investigating the hygroscopic characteristics of mixed
    aerosols. The mutual deliquescence relative humidity (MDRH) of various mixed
    fractions of NaCl-Na2SO4 and NH4NO3-NH4Cl binary-salt aerosol systems is
    found at 74% and 54%, respectively. In contrast, the MDRH of
    NaCl-Na2SO4-NaNO3 and NaCl-(NH4)2SO4-NH4NO3 tri-salt aerosol systems is
    70% and 50%, respectively. The complete deliquescence relative humidity in
    these mixed aerosol systems is demonstrated to be dependent on the original
    aerosol composition. The deliquescence relative humidity (DRH) of NH4NO3
    aerosol is shifted to higher value by decreasing the ambient temperature, as is
    evidenced by the DRH obtained at 54, 62, and 68% from the measurement at 35,
    25, and 15℃, respectively.
    For the first time, the DRH and crystallization relative humidity of
    Na2CO3 aerosol presented by this method is 78% and 39%, respectively.
    Moreover, this work originally demonstrates the eutonic composition of
    NaCl-Na2SO4 binary aerosol is close to the composition of a solution with 90%
    NaCl and 10% Na2SO4. To date experimental data from complicated tri-salt
    aerosol systems have been very scarce. The data from this work and the
    comparison with model estimates facilitate the understanding of this aerosol
    system. Finally, an application of GC-TCD method to the measurement of LWM
    of atmospheric aerosol shows the fraction of aerosol water in PM2.5 can be
    ranged from 19 to 41% for ambient humid condition varying between 62 to 77%
    RH.

    中文摘要… … … … … … … … … … … … … … … … … … … … … … … … … … … … … Ⅰ 英文摘要… … … … … … ..… … … … … … … … … … … … … … … … … … … … … … … … Ⅲ 目錄… … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … .Ⅴ 圖目錄… … .… … … … … … … … … … … … … … … … … … … … … … … … … … … ...… .Ⅷ 表目錄… … … … … … … … … … … … ...… … … … … … … … … … … … … ...… … … … … ⅩⅠ 第1 章前言..............................................................................................................................1 1.1 研究動機..........................................................................................................................1 1.2 研究內容與預期效益......................................................................................................4 第2 章文獻回顧......................................................................................................................6 2.1 氣膠含水特性..................................................................................................................6 2.1.1 無機純氣膠含水特性..............................................................................................6 2.1.2 無機混合氣膠含水特性..........................................................................................7 2.2 氣膠含水特性對於環境問題的衝擊............................................................................10 2.2.1 氣膠質量濃度量測................................................................................................10 2.2.2 酸性沉降................................................................................................................ 11 2.2.3 氣膠光學性質........................................................................................................12 2.2.4 氣候變遷................................................................................................................13 2.2.5 人體健康................................................................................................................14 2.3 影響氣膠含水特性的因子............................................................................................15 2.3.1 溫度........................................................................................................................15 2.3.2 大氣溼度................................................................................................................17 2.3.3 氣膠物種組成........................................................................................................20 2.3.4 氣膠混合方式........................................................................................................21 2.3.5 氣膠的亞穩定特性(Metastability).........................................................................22 2.4 氣膠含水量的量測方法................................................................................................23 2.4.1 秤重法....................................................................................................................23 2.4.2 EDB(Electrodynamic Balance)法............................................................................24 2.4.3 b 射線法.................................................................................................................26 2.4.4 TEOM (Tapered Element Oscillating Microbalance)法..........................................26 2.4.5 TDMA(Tandem Differential Mobility Analyzer)法..................................................27 2.4.6 RSMS (Rapid Single-particle Mass Spectrometry)法..............................................30 2.4.7 EA-TCD 法..............................................................................................................31 VI 2.4.8 FTIR (Fourier Transform Infrared Spectroscopy)法...............................................32 2.4.9 Karl Fischer 法........................................................................................................33 2.4.10 其他量測方法.......................................................................................................34 2.5 氣膠吸濕的理論模式....................................................................................................34 第3 章研究設備與方法.........................................................................................................39 3.1 GC-TCD 氣膠含水量量測系統研發.............................................................................39 3.1.1 研發背景.................................................................................................................39 3.1.2 量測原理.................................................................................................................41 3.1.3 GC-TCD 氣膠含水量量測設備..............................................................................45 3.1.4 量測步驟.................................................................................................................52 3.1.5 偵測極限.................................................................................................................53 3.1.6 萃取時間與調理時間.............................................................................................54 3.2 氣膠組成模式................................................................................................................57 3.2.1 GFEMN 模式...........................................................................................................57 3.2.2 ISORROPIA 模式....................................................................................................61 3.2.3 AIM 模式..................................................................................................................66 3.3 大氣氣膠含水量量測....................................................................................................68 3.3.1 量測規劃.................................................................................................................69 3.3.2 大氣氣膠採樣設備.................................................................................................69 3.3.3 量測步驟.................................................................................................................73 第4 章結果與討論.................................................................................................................75 4.1 純鹽氣膠含水特性........................................................................................................75 4.1.1 NaCl 氣膠含水特性................................................................................................76 4.1.2 Na2SO4 氣膠含水特性.............................................................................................78 4.1.3 NH4NO3 氣膠含水特性...........................................................................................80 4.1.4 NH4Cl 氣膠含水特性..............................................................................................81 4.1.5 (NH4)2SO4 氣膠含水特性........................................................................................82 4.1.6 Na2CO3 氣膠含水特性............................................................................................83 4.1.7 以NaCl 氣膠含水量量測結果探討GC-TCD 法精密度.....................................84 4.1.8 GC-TCD 法在各種鹽類氣膠含水量量測結果差異性..........................................87 4.2 氣膠含水量推估............................................................................................................92 4.2.1 NaCl 氣膠含水量推估............................................................................................92 4.2.2 Na2SO4 氣膠含水量推估.........................................................................................94 4.2.3 NH4NO3 氣膠含水量推估.......................................................................................96 4.2.4 NH4Cl 氣膠含水量推估..........................................................................................97 4.2.5 (NH4)2SO4 氣膠含水量推估....................................................................................98 4.2.6 GC-TCD 量測值與模式推估值差異整理..............................................................99 4.3 混合氣膠吸濕特性探討..............................................................................................103 4.3.1 NaCl-Na2SO4 混合氣膠.........................................................................................103 4.3.2 NH4Cl-NH4NO3 混合氣膠.....................................................................................108 4.4 三種鹽類混合氣膠含水特性...................................................................................... 110 4.4.1 NaCl-Na2SO4-NaNO3 混合氣膠含水特性............................................................ 111 4.4.2 NaCl-(NH4)2SO4-NH4NO3 混合氣膠含水特性..................................................... 112 4.5 溫度對於氣膠含水特性的探討.................................................................................. 116 4.6 大氣氣膠含水量量測.................................................................................................. 118 第5 章結論與建議..............................................................................................................120 5.1 結論..............................................................................................................................120 5.2 建議..............................................................................................................................124

    126
    Allen, G.A., 1998. Invited comments on: “real time liquid water mass measurement for
    airborne particulates”. Aerosol Science and Technology 29, 563-565.
    Bassett, M., Seinfeld, J.H., 1984. Atmospheric equilibrium model of sulfate and nitrate
    aerosols Ⅱ. Particle size analysis. Atmospheric Environment 18, 1163-1170.
    Boucher, O., Anderson, T.L., 1996. GCM assessment of the sensitivity of direct climate
    forcing by anthropogenic sulfate aerosols to aerosol size and chemistry. Journal of
    Geophysical Research 100, 26117-26134.
    Bromley, L.A., 1973. Thermodynamic properties of strong electrolytes in aqueous solutions.
    American Institute of Chemical Engineering Journal 19, 313-320.
    Carson, P.G., Neubauer, K.P., Johnston, M.V., and Wexler, A.S., 1995. On-line chemical
    analysis of aerosols by rapid single-particle mass spectrometry. Journal of Aerosol
    Science 26, 535-545.
    Capaldo, K.P., Pilinis, C., and Pandis, S.N., 2000. A computationally efficient hybrid
    approach for dynamic gas/aerosol transfer in air quality models. Atmospheric
    Environment 34, 3617-3627.
    Chan, C.K., Flagan, R.H., Seinfeld, J.H., 1992. Water activities of NH4NO3-(NH4)2SO4
    solutions. Atmospheric Environment 26, 1661-1673.
    Chan, C.K., Liang, Z., Zheng, J., Clegg, S.L., Brimblecombe, P., 1997. Thermodynamic
    properties of aqueous aerosols to high supersaturation: Ⅰ- measurements of water activity
    of the system Na+-Cl--NO3
    --SO4
    2--H2O at ~ 298.15K. Aerosol Science and Technology 27,
    324-344.
    Chan, C.K., Ha, Z., and Choi, M.Y., 2000. Study of water activities of aerosols of mixtures
    of sodium and magnesium salts. Atmospheric Environment 34, 4795-4803.
    127
    Clegg, S.L., Brimblecombe, P., Wexler, A.S., 1998. A thermodynamic model of the system
    H+-NH4
    +-Na+-SO4
    2--NO3
    --Cl--H2O at 298.15 K. Journal of Physical Chemistry 102,
    2155-2171.
    Cohen, M.D., Flagan, R.C., Seinfeld, J.H., 1987. Studies of concentrated electrolyte
    solutions using the electrodynamic balance: 2. Water activity for mixed-electrolyte
    solutions. Journal of Physical Chemistry 91, 4575-4582.
    Curry, J.A., Schramm, J.L., Serreze, M.C., Ebert, E.E., 1995. Water vapor feedback over the
    Aretic Ocean. Journal of Geophysical Research 100, 14223-14229.
    Cziczo, D.J., Nowak, J.B., Hu, J.H., Abbatt, J.P.D., 1997. Infrared spectroscopy of model
    tropospheric aerosols as a function of relative humidity: observation of deliquescence and
    crystallization. Journal of Geophysical Research 102, 18843-18850.
    Denbigh, K., 1981. The principles of chemical equilibrium 4thed., Cambridge
    University Press, Cambridge.
    Dua, S.K., Hopke, P.K., Raunemaa, T., 1995. Hygroscopic growth of consumer
    spray products. Aerosol Science and Technology 23, 331-340.
    Dua, S.K., Hopke, P.K., 1996. Hygroscopic growth of assorted indoor aerosols.
    Aerosol Science and Technology 24, 151-160.
    Fitzgerald, J.W., 1991. Marine aerosols: a review. Atmospheric Environment 25A, 311-314.
    Ge, Z., Wexler, A.S., Johnston, M.V., 1996. Multicomponent aerosol crystallization. Journal
    of Colloid and Interface Science 183, 68-77.
    Ge, Z., Wexler, A.S., Johnston, M.V., 1998. Deliquescence behavior of multicomponent
    aerosols. Journal of Physical Chemistry 102A, 173-180.
    Ha, Z., Choy, L., Chan, C. K., 2000. Study of water activities of supersaturated aerosols of
    sodium and ammonium salts. Journal of Geophysical Research 105D, 11699-11709.
    Han, J.H., Martin, S.T., 1999. Heterogeneous nucleation of the efflorescence of (NH4)2SO4
    particles internally mixed with Al2O3, TiO2, and ZrO2. Journal of Geophysical Research
    128
    104, 3543-3553.
    Hanel, G., 1976. The properties of atmospheric aerosol particles as functions of the relative
    humidity at thermodyna mic equilibrium with the surrounding moist air. Advances in
    Geophysics 19, 74-183.
    Hansson, H.C., Rood, M.J., Koloutsou-Vakakis, S., Hameri, K., Orsini, D., Wiedensohler,
    A., 1998. NaCl aerosol particle hygroscopicity dependence on mixing with organic
    compounds. Journal of Atmospheric Chemistry 31, 321-346.
    Hegg, D.A., Covert, D.S., Rood, M.J., Hobbs, P.V., 1996. Measurements of aerosol optical
    properties in marine air. Journal of Geophysical Research 101, 12893-12903.
    Hitzenberger, R., Berner, A., Dusek, U., Alabashi, R., 1997. Humidity-dependent growth of
    size-segregated aerosol samples. Aerosol Scence and Technology 27, 116-130.
    Hu, J.H., Abbatt, J.P.D., 1997. Reaction probilities for N2O5 hydrolysis on sulfuric acid and
    ammonium sulfate aerosols at room temperature, Journal of Physical Chemistry A 101,
    871-878.
    Johnson, D.L., Wenger, E.N., Polikandritous-Lambros, M., 1996. Aerosolization and
    hygroscopic growth evaluation of lyophilized liposome aerosols under controlled
    temperature and relative humidity conditions. Aerosol Science and Technology 25, 22-30.
    Keene, W.C., Sander, R., Pszenny, A.A.P., Vogt, R., Crutzen, P.J., Galloway, J.N., 1998.
    Aerosol pH in the marine boundary layer: a review and model evaluation. Journal of
    Aerosol Science 29, 339-356.
    Khvorostyanov, V.I., Curry, J.A., 1999. A simple analytical model of aerosol properties with
    account for hygroscopic growth 2. Scattering and absorption coefficients. Journal of
    Geophysical Research 104, 2163-2174.
    Kim, Y.P., Seinfeld, J.H., Saxena, P., 1993a. Atmospheric gas-aerosol equilibrium Ⅰ.
    Thermodynamic model. Aerosol Science and Technology 19, 157-181.
    Kim, Y.P., Seinfeld, J.H., Saxena, P., 1993b. Atmospheric gas-aerosol equilibrium Ⅱ.
    129
    Analysis of common approximations and activity coefficient calculation methods. Aerosol
    Science and Technology 19, 182-198.
    Kusik, C.L., Meissner, H.P., 1978. Electrolyte activity coefficients in inorganic processing.
    American Institute of Chemical Engineering Symposium Series 173, 14-20.
    Lee, C.T., Hsu,W.C., 1998. A Novel Method to Measure Aerosol Water Mass. Journal of
    Aerosol Science 29, 827-837.
    Lee, C.T., Hsu, W.C., 2000. The measurement of liquid water mass associated with
    collected hygroscopic particles. Journal of Aerosol Science 31, 189-197.
    Lee, W.M.G., Chen, C.Y., Huang, S.L., Lee, C.T., 1996. The deliquescent growth of
    inorganic-salt aerosols observed by a combined system of TDMA and intergrated
    nephelometer. Journal of Aerosol Science 27, S313-S314.
    Li, W., Montassier, N., Hopke, P.K., 1992. A system to measure the hygroscopicity of
    aerosol particles. Aerosol Science and Technology 17, 25-35.
    Li,W., Hopke, P.K., 1994. Hygroscopic of consumer spray product aerosol particles. Journal
    of Aerosol Science 25, 1341-1351.
    Lightstone, J.M., Onasch, T.B., Imre, D., 2000. Deliquescence, efflorescence, and water
    activity in ammonium nitrate and mixed ammonium nitrate/succinic acid microparticles.
    Journal of Physical Chemistry 104A, 9337-9346.
    Martin, S.T., 1998. Phase transformations of the ternary system (NH4)2SO4-H2SO4-H2O and
    the implications for cirrus cloud formation. Geophysical Research Letter 25, 1657-1660.
    McConnel, J.C., Henderson, G.S., Barrie, L., Bottengeim, J., Niki, H., Langford, C.H.,
    Templeton, E.M.J., 1992. Photochemical bromine production implicated in Arctic
    boundary- layer ozone depletion. Nature 335, 150-152.
    McMurry, P.H., Zhang, X.Q., 1991. Optical properties of Los Angeles Aerosols: an analysis
    of data acquired during SCAQS. Final report to the Coordinating Research Council, 219
    Perimeter Center Parkway, Atlanta, GA 30346.
    130
    McInnes, L. M., Quinn, P. K., Covert, D. S., Anderson, T. L., 1996. Gravimetric analysis,
    ionic composition, and associated water mass of the marine aerosol. Atmospheric
    Environment 30, 869-884.
    Neubauer, K.R., Johnston, M.V., Wexler, A.S., 1998. Humidity effects on the mass spectra
    of single aerosols particles. Atmospheric Environment 32, 2521-2529.
    Onasch, T.B., Siefert, R.L., Brooks, S.D., Prenni, A.J., Murray, B., Wilson, M.A., Tolbert,
    M.A., 1999. Infrared spectroscopic study of the deliquescence and efflorescence of
    ammonium sulfate aerosol as a function of temperature. Journal of Geophysical Research
    104, 21317-21326.
    Orr, C.J., Hurd, F.K., Corbett, W.J., 1958. Aerosol size and relative humidity. Journal of
    Colloid Science 13, 472-482.
    Pitchford, M.L., Mumurry, P.H., 1994. Relationship between measured water vapor growth
    and chemistry of atmospheric aerosol for Grand Canyon, Arizona, in winter. Atmospheric
    Environment 28, 827-839.
    Potukuchi, S., Wexler, A.S., 1995a. Identifying solid-aqueous phase transitions in
    atmospheric aerosols- . Ⅰ neutral-acidity solutions. Atmospheric Environment 29,
    1663-1676.
    Potukuchi, S., Wexler, A.S., 1995b. Identifying solid-aqueous-phase transitions in
    atmospheric aerosols. . Ⅱ acidic solutions. Atmospheric Environment 32, 3357-3364.
    Rader, D. J., McMurry, P. H., 1986. Application of the tandem differential mobility analyzer
    to studies of droplet growth or evaporation. Journal of Aerosol Science 17, 771-787.
    Rogers, C.F., Watson, J.G., Day, D., and Oraltay, R.G., 1998. Real-time liquid water mass
    measurement for airborne particulates. Aerosol Science and Technology 29, 557-562.
    Rood, M.J., Shaw, M.A., Larson, T.V., 1989. Ubiquitous nature of ambient metastable
    aerosol. Nature 337, 537-539.
    Sievering, H., Gorman, E., Ley, T., Pszenny, A., Spring-Young, M., Boatman, J., Kim, Y.,
    131
    Nagamoto, C., Wellman, D., 1995. Ozone oxidation of sulfur in sea-salt aerosol particles
    during the Azores marine aerosol and gas exchange experiment. Journal of Geophysical
    Research 100, 23075-23081.
    Solane, C.S., 1983. Optical properties of aerosol-composition of measurements with model
    calculations. Atmospheric Environment 17, 409-416.
    Speer, R.E., Barnes, H.M., Brown, R., 1997. An instrument for measuring the liquid water
    content of aerosols. Aerosol Science and Technology 27, 50-61.
    Tabazadeh, A., Jensen, E.J., Toon, O.B., 1997. A model descruption for cirrus cloud
    nucleation from homogeneous freezing of sulfate aerosols. Journal of Geophysical
    Research 102, 23845-23850.
    Talbot, R.W., Dibb, J.E., Loomis, M.B., 1998. Influence of vertical transport on free
    tropospheric aerosols over the central USA in springtime. Geophysical Research Letter 25,
    1367-1370.
    Tang, I.N., 1976. Phase transformations and growth of aerosol particles composed of mixed
    salts. Journal of Aerosol Science 7, 361-371.
    Tang, I.N., Munkelwitz, H.R.,1977. Aerosol growth studies-Ⅲ. Ammonium bisulfate
    aerosols in a moist atmosphere. Journal of Aerosol Science 8, 321-330.
    Tang, I.N., 1980. Deliquescence properties and particle size change of hygroscopic aerosols.
    In generation of aerosols and facilities for exposure experiments(edited by Willeke, K.),
    153-167. Ann Arbor Science, Ann Arbor, MI.
    Tang, I.N., Fung, K.H., Imre, D.G., Munkelwitz, H.R., 1995. Phase transformation and
    metastability of hygroscopic microparticles. Aerosol Science and Technology 23,
    443-453.
    Tang, I.N., 1997. Thermodynamic and optical properties of mixed-salt aerosols of
    atmospheric importance. Journal of Geophysical Research 102, 1883-1893.
    Tang, I.N., Tridico, A.C., Fung, K.H., 1997. Thermodynamic and optical properties of sea
    132
    salt aerosols. Journal of Geophysical Research 102, 23269-23275.
    Trakumas, S., Juozaitis, A., Buzorius, G., Girgzdys, A., Vidmantas, U., 1995. Investigations
    of hygroscopical properties of atmosphere aerosol particle. Journal of Aerosol Science 26,
    S371-S372.
    Twomey, S., 1954. The composition of hygroscopic particles in the atmosphere. Journal of
    Met. 11, 334-346.
    Weingartner, E., Baltensperger, U., Burtscher, H., 1995. Growth and structural changes of
    combustion aerosols at high relative humidity. Journal of Aerosol Science 26, S667-S668.
    Weingartner, E., Burtscher, H., Baltensperger, U., 1996. Hydration properties of diesel soot
    particles. Journal of Aerosol Science 27, S695-S696.
    Weis, D.D., Ewing, G.E., 1996. Infrared spectroscopic signatures of (NH4)2SO4 aerosols.
    Journal of Geophysical Research 101, 18709-18720.
    Wexler, A.S., Seinfeld, J.H., 1991. Second-generation inorganic aerosol model. Atmospheric
    Environment 25A, 2731-2748.
    Zhuang, H., Chan, C.K., Fang, M., Wexler, A.S., 1999a. Formation of nitrate and
    non-sea-salt sulfate on coarse particles. Atmospheric Environment 33, 4223-4233.
    Zhuang, H., Chan, C.K., Fang, M., Wexler, A.S., 1999b. Size distributions of particulate
    sulfate, nitrate and ammonium at a coastal site in Hong Kong. Atmospheric Environment
    33, 843-853.
    蔡德明、吳義林,2000。相對溼度對質量濃度之影響效應研究。第十七屆空氣污染控
    制技術研討會論文集,126-131。
    顏有利、李康文、許志雄,1998。竹山測站附近PM10 污染源之調查及其影響之探討(Ⅱ)。
    南投縣環保局。
    顏有利、王竹方、江鴻龍,2000。竹山測站、南投測站及埔里測站附近PM10 污染源
    之調查。南投縣環保局。
    簡弘民、李壽南,2000。監測站PM10、PM2.5 量測比較及污染源分析。第八屆氣膠科
    技研討會論文集,22-28。

    QR CODE
    :::