| 研究生: |
成昕 Hsin Cheng |
|---|---|
| 論文名稱: |
鉍摻雜至La0.6Sr0.4Co0.2Fe0.8O3 作為質子傳導型SOFC陰極之可行性研究 Bismuth doped La0.6Sr0.4Co0.2Fe0.8O3 as cathode for proton-conducting solid oxide fuel cells |
| 指導教授: |
林景崎
Jing-Chie Lin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 固態氧化物燃料電池 、鑭鍶鈷鐵氧化物 、陰極材料 、鉍摻雜 、質子傳導型陰極 |
| 外文關鍵詞: | Solid oxide fuel cell, Lanthanum-strontium-cobalt-ferrite oxide, cathode material, Bismuth doping, Proton-conducting cathode |
| 相關次數: | 點閱:5 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究透過在以燃燒合成法製作之鈣鈦礦結構La0.6-xSr0.4Co0.2Fe0.8O3陰極材料中摻雜鉍,形成La0.6-xSr0.4BixCo0.2Fe0.8O3-δ(X=0、0.1、0.2、0.3、0.4、0.5;分別標示為LSB1CF、LSB2CF、LSB3CF、LSB4CF、LSB5CF) ,以探討其作為質子傳導型固態燃料電池陰極材料的可行性。燃燒過程中經由調整LSCF前驅硝酸鹽水溶液之酸鹼值(pH值: 1、2、3、4)與甘胺酸-硝酸根比值(G/N比: 0.75、1.00、1.25、1.50),觀察經1000 °C、2 h煆燒後粉末之結晶結構,再以最佳燃燒法合成參數(G/N比、pH值)進行LSBxCF之合成,並分析其電化學性質。在LSCF實驗結果所示,在LSCF1.25/3、LSCF1.25/4、LSCF1.50/3與LSCF1.50/4等樣品中,LSCF1.50/3為所有燃燒法合成參數中結晶結構最符合作為SOFC陰極之結果,故以此參數作為後續LSBxCF合成之燃燒參數。經X光晶體繞射分析LSBxCF陰極粉末可發現,因摻雜離子半徑較小之Bi3+進入A-site,所以出現整體特徵峰的 2θ 有變大之趨勢,並且在LSB4CF、LSB5CF中出現些微雜項,其餘之參數接並未出現雜項。由四點式直流電量測導電度,LSCF雖隨著Bi的摻雜會導致電子導電度下降,但同時質子導電度會從原本無法導通質子,而隨Bi摻雜量上升而有些微提升。LSB3CF之單電池在800°C時擁有最高功率密度358.4 mW cm-2,比LSCF單電池140.6 mW cm-2高了155%,以及最低極化阻抗0.09 Ω cm2,比LSCF單電池降低25%;並且分別在700°C和600°C下皆具有最高功率密度183.5 mW cm-2、134.3 mW cm-2。
本研究結果可知,LSB3CF陰極材料可有效提升質子在陰極中之傳導,在800 ℃操作溫度之電化學性能表現良好具有最高功率密度358.4 mW/cm2,並且在700°C及600°C下皆有最佳之電化學性能表現。
In this study, the perovskite structure La0.6-xSr0.4Co0.2Fe0.8O3 cathode material made by the combustion synthesis method was doped with bismuth to form La0.6-xSr0.4BixCo0.2Fe0.8O3-δ(X=0 , 0.1, 0.2, 0.3, 0.4, 0.5; respectively marked as LSB1CF, LSB2CF, LSB3CF, LSB4CF) to explore its feasibility as a proton-conducting solid fuel cell cathode material. During the combustion process, the pH value (pH value: 1, 2, 3, 4) and the ratio of glycine-nitrate (G/N ratio: 0.75, 1.00, 1.25, 1.50) of the LSCF precursor nitrate aqueous solution were adjusted to observe After sintering at 1000°C for 2h, the crystalline structure of the powder is then synthesized with the best combustion method synthesis parameters (G/N ratio, pH value), and its electrochemical properties are analyzed. According to the LSCF experimental results, in the samples of LSCF 1.25/3, LSCF 1.25/4, LSCF 1.50/3 and LSCF 1.50/4, LSCF 1.50/3 is the most crystalline structure among all the combustion synthesis parameters. It conforms to the result of SOFC cathode, so this parameter is used as the combustion parameter for subsequent LSBxCF synthesis. Through X-ray crystal diffraction analysis of LSBxCF cathode powder, it can be found that the 2θ of the overall characteristic peak tends to become larger due to the smaller Bi3+ doped ion radius entering the A-site, and there are some minor miscellaneous items in LSB4CF and LSB5CF. The other parameter connections did not appear miscellaneous. The conductivity is measured by the four-point direct current electric quantity, LSCF will cause the electronic conductivity to decrease with the doping of Bi, but at the same time, the proton conductivity will never be able to conduct protons, and will slightly increase with the increase of the doping amount.. The LSB3CF single cell has the highest power density of 358.4 mW cm-2 at 800°C, which is 155% higher than the LSCF single cell 140.6 mW cm-2, and the lowest polarization impedance of 0.09 Ω cm2, which is 25% lower than the LSCF single cell; And it has the highest power density of 183.5 mW cm-2 and 134.3 mW cm-2 at 700°C and 600°C, respectively. The results of this study show that the LSB3CF cathode material can effectively enhance the conduction of protons in the cathode, and the electrochemical performance is good at the operating temperature of 800 ℃. It has the highest power density of 358.4 mW/cm2, and it has the highest power density at 700°C and 600°C. The best electrochemical performance.
1. H.-I. Ji, J.-H. Lee, J.-W. Son, K.J. Yoon, S. Yang, and B.-K. Kim, “Protonic ceramic electrolysis cells for fuel production: a brief review”, Journal of the Korean Ceramic Society. 57: p. 480-494, 2020
2. W.R. Grove, “XXIV. On voltaic series and the combination of gases by platinum”, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 14(86-87): p. 127-130, 1839
3. Y.A. Cengel, M.A. Boles, and M. Kanoglu, Thermodynamics: an engineering approach. Vol. 5, McGraw-hill New York. 2011
4. J. Hou, Z. Zhu, J. Qian, and W. Liu, “A new cobalt-free proton-blocking composite cathode La2NiO4+ δ–LaNi0. 6Fe0. 4O3− δ for BaZr0. 1Ce0. 7Y0. 2O3− δ-based solid oxide fuel cells”, Journal of Power Sources. 264: p. 67-75, 2014
5. L. Bi, S. Boulfrad, and E. Traversa, “Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides”, Chemical Society Reviews. 43(24): p. 8255-8270, 2014
6. S. Badwal, S. Giddey, C. Munnings, and A. Kulkarni, “Review of progress in high temperature solid oxide fuel cells”, ChemInform. 46(31): p. no-no, 2015
7. J. Kim, S. Sengodan, G. Kwon, D. Ding, J. Shin, M. Liu, and G. Kim, “Triple-conducting layered perovskites as cathode materials for proton-conducting solid oxide fuel cells”, ChemSusChem. 7(10): p. 2811-2815, 2014
8. Y. Xia, Z. Jin, H. Wang, Z. Gong, H. Lv, R. Peng, W. Liu, and L. Bi, “A novel cobalt-free cathode with triple-conduction for proton-conducting solid oxide fuel cells with unprecedented performance”, Journal of Materials Chemistry A. 7(27): p. 16136-16148, 2019
9. Y. Niu, J. Sunarso, F. Liang, W. Zhou, Z. Zhu, and Z. Shao, “A comparative study of oxygen reduction reaction on Bi-and La-doped SrFeO3− δ perovskite cathodes”, Journal of the Electrochemical Society. 158(2): p. B132, 2010
10. T. Horita, K. Yamaji, N. Sakai, Y. Xiong, T. Kato, H. Yokokawa, and T. Kawada, “Imaging of oxygen transport at SOFC cathode/electrolyte interfaces by a novel technique”, Journal of Power Sources. 106(1-2): p. 224-230, 2002
11. J. Sunarso, S.S. Hashim, N. Zhu, and W. Zhou, “Perovskite oxides applications in high temperature oxygen separation, solid oxide fuel cell and membrane reactor: a review”, Progress in Energy and Combustion Science. 61: p. 57-77, 2017
12. K. Kreuer, “Aspects of the formation and mobility of protonic charge carriers and the stability of perovskite-type oxides”, Solid State Ionics. 125(1-4): p. 285-302, 1999
13. F. He, M. Liang, W. Wang, R. Ran, G. Yang, W. Zhou, and Z. Shao, “High-performance proton-conducting fuel cell with b-site-deficient perovskites for all cell components”, Energy & Fuels. 34(9): p. 11464-11471, 2020
14. W. Wang, D. Medvedev, and Z. Shao, “Gas Humidification Impact on the Properties and Performance of Perovskite‐Type Functional Materials in Proton‐Conducting Solid Oxide Cells”, Advanced Functional Materials. 28(48): p. 1802592, 2018
15. M.R. Somalu, N.W. Norman, and A. Muchtar, “A short review on the proton conducting electrolytes for solid oxide fuel cell applications”, Journal of Advanced Research in Fluid Mechanics and Thermal Sciences. 52(2): p. 115-122, 2018
16. L. Bi, E.H. Da'as, and S.P. Shafi, “Proton-conducting solid oxide fuel cell (SOFC) with Y-doped BaZrO3 electrolyte”, Electrochemistry Communications. 80: p. 20-23, 2017
17. 衣寶廉, 燃料電池: 原理與應用. 五南圖書出版股份有限公司. 2005
18. S.P. Shaikh, A. Muchtar, and M.R. Somalu, “A review on the selection of anode materials for solid-oxide fuel cells”, Renewable and Sustainable Energy Reviews. 51: p. 1-8, 2015
19. W. Zhu and S. Deevi, “A review on the status of anode materials for solid oxide fuel cells”, Materials Science and Engineering: A. 362(1-2): p. 228-239, 2003
20. M. Zunic, L. Chevallier, A. Radojkovic, G. Brankovic, Z. Brankovic, and E. Di Bartolomeo, “Influence of the ratio between Ni and BaCe0. 9Y0. 1O3− δ on microstructural and electrical properties of proton conducting Ni–BaCe0. 9Y0. 1O3− δ anodes”, Journal of alloys and compounds. 509(4): p. 1157-1162, 2011
21. B.H. Rainwater, M. Liu, and M. Liu, “A more efficient anode microstructure for SOFCs based on proton conductors”, international journal of hydrogen energy. 37(23): p. 18342-18348, 2012
22. L. Bi, E. Fabbri, and E. Traversa, “Effect of anode functional layer on the performance of proton-conducting solid oxide fuel cells (SOFCs)”, Electrochemistry communications. 16(1): p. 37-40, 2012
23. K. Xie, R. Yan, and X. Liu, “A novel anode supported BaCe0. 4Zr0. 3Sn0. 1Y0. 2O3− δ electrolyte membrane for proton conducting solid oxide fuel cells”, Electrochemistry communications. 11(8): p. 1618-1622, 2009
24. H. Moon, S.D. Kim, E.W. Park, S.H. Hyun, and H.S. Kim, “Characteristics of SOFC single cells with anode active layer via tape casting and co-firing”, International Journal of Hydrogen Energy. 33(11): p. 2826-2833, 2008
25. J. Patakangas, Y. Ma, Y. Jing, and P. Lund, “Review and analysis of characterization methods and ionic conductivities for low-temperature solid oxide fuel cells (LT-SOFC)”, Journal of Power Sources. 263: p. 315-331, 2014
26. S. Badwal and K. Foger, “Solid oxide electrolyte fuel cell review”, Ceramics International. 22(3): p. 257-265, 1996
27. C. Sun, R. Hui, and J. Roller, “Cathode materials for solid oxide fuel cells: a review”, Journal of Solid State Electrochemistry. 14(7): p. 1125-1144, 2010
28. A. Nikonov, K. Kuterbekov, K.Z. Bekmyrza, and N. Pavzderin, “A brief review of conductivity and thermal expansion of perovskite-related oxides for SOFC cathode”, Eurasian Journal of Physics and Functional Materials. 2(3): p. 274-292, 2018
29. N.Q. Minh, “Ceramic fuel cells”, Journal of the American Ceramic Society. 76(3): p. 563-588, 1993
30. N.Q. Minh, “Solid oxide fuel cell technology—features and applications”, Solid State Ionics. 174(1-4): p. 271-277, 2004
31. A.J. Appleby, “Fuel cell handbook”, 1988
32. S.M. Haile, “Fuel cell materials and components”, Acta materialia. 51(19): p. 5981-6000, 2003
33. R. O'hayre, S.-W. Cha, W. Colella, and F.B. Prinz, Fuel cell fundamentals. John Wiley & Sons. 2016
34. E. Povoden-Karadeniz, Thermodynamic database of the La-Sr-Mn-Cr-O oxide system and applications to solid oxide fuel cells. 2008, ETH Zurich.
35. N.-Y. Hsu, S.-C. Yen, K.-T. Jeng, and C.-C. Chien, “Impedance studies and modeling of direct methanol fuel cell anode with interface and porous structure perspectives”, Journal of power sources. 161(1): p. 232-239, 2006
36. L. Fan and P.-C. Su, “Layer-structured LiNi0. 8Co0. 2O2: a new triple (H+/O2−/e−) conducting cathode for low temperature proton conducting solid oxide fuel cells”, Journal of Power Sources. 306: p. 369-377, 2016
37. S.B. Adler, “Factors governing oxygen reduction in solid oxide fuel cell cathodes”, Chemical reviews. 104(10): p. 4791-4844, 2004
38. T. Ishihara, Perovskite oxide for solid oxide fuel cells. Springer Science & Business Media. 2009
39. H. Arai, T. Yamada, K. Eguchi, and T. Seiyama, “Catalytic combustion of methane over various perovskite-type oxides”, Applied catalysis. 26: p. 265-276, 1986
40. S. Choi and G. Kim, “Electrochemical Properties of La4Ni3O10-GDC Composite Cathode by Facile Sol-gel Method for IT-SOFCs”, Journal of the Korean Ceramic Society. 51(4): p. 265-270, 2014
41. S. Choi and G. Kim, “Electrochemical Properties of La 4 Ni 3 O 10-GDC Composite Cathode by Facile Sol-gel Method for IT-SOFCs”, Journal of the Korean Ceramic Society. 51(4): p. 265-270, 2014
42. U.S. Schubert and N. Hüsing, Synthesis of inorganic materials. John Wiley & Sons. 2019
43. X. Fang, G. Zhu, C. Xia, X. Liu, and G. Meng, “Synthesis and properties of Ni–SDC cermets for IT–SOFC anode by co-precipitation”, Solid State Ionics. 168(1-2): p. 31-36, 2004
44. R. Pelosato, C. Cristiani, G. Dotelli, M. Mariani, A. Donazzi, and I.N. Sora, “Co-precipitation synthesis of SOFC electrode materials”, international journal of hydrogen energy. 38(1): p. 480-491, 2013
45. S.Y. Lee, J. Yun, and W.-P. Tai, “Synthesis of Ni-doped LaSrMnO3 nanopowders by hydrothermal method for SOFC interconnect applications”, Advanced Powder Technology. 29(10): p. 2423-2428, 2018
46. W. Jang, S. Hyun, and S. Kim, “Preparation of YSZ/YDC and YSZ/GDC composite electrolytes by the tape casting and sol-gel dip-drawing coating method for low-temperature SOFC”, Journal of Materials Science. 37(12): p. 2535-2541, 2002
47. P.G. Keech, D.E. Trifan, and V.I. Birss, “Synthesis and performance of sol-gel prepared Ni-YSZ cermet SOFC anodes”, Journal of The Electrochemical Society. 152(3): p. A645, 2005
48. W. Zhou, Z. Shao, R. Ran, H. Gu, W. Jin, and N. Xu, “LSCF nanopowder from Cellulose–Glycine‐Nitrate process and its application in Intermediate‐Temperature Solid‐Oxide fuel cells”, Journal of the American Ceramic Society. 91(4): p. 1155-1162, 2008
49. L. Da Conceicao, A.M. Silva, N.F. Ribeiro, and M.M. Souza, “Combustion synthesis of La0. 7Sr0. 3Co0. 5Fe0. 5O3 (LSCF) porous materials for application as cathode in IT-SOFC”, Materials Research Bulletin. 46(2): p. 308-314, 2011
50. M. Backhaus-Ricoult, K. Adib, T.S. Clair, B. Luerssen, L. Gregoratti, and A. Barinov, “In-situ study of operating SOFC LSM/YSZ cathodes under polarization by photoelectron microscopy”, Solid State Ionics. 179(21-26): p. 891-895, 2008
51. A.J. Schuler, Z. Wuillemin, A. Hessler-Wyser, and J. Van Herle, “Sulfur as pollutant species on the cathode side of a SOFC system”, ECS Transactions. 25(2): p. 2845, 2009
52. J. Mizusaki, Y. Mima, S. Yamauchi, K. Fueki, and H. Tagawa, “Nonstoichiometry of the perovskite-type oxides La1− xSrxCoO3− δ”, Journal of Solid State Chemistry. 80(1): p. 102-111, 1989
53. K. Lee and A. Manthiram, “Effect of cation doping on the physical properties and electrochemical performance of Nd0. 6Sr0. 4Co0. 8M0. 2O3− δ (M= Ti, Cr, Mn, Fe, Co, and Cu) cathodes”, Solid State Ionics. 178(13-14): p. 995-1000, 2007
54. B. Fan, J. Yan, and X. Yan, “The ionic conductivity, thermal expansion behavior, and chemical compatibility of La0. 54Sr0. 44Co0. 2Fe0. 8O3-δ as SOFC cathode material”, Solid state sciences. 13(10): p. 1835-1839, 2011
55. 葉哲均, 甘胺酸-硝酸燃燒合成法製備固態氧化物燃料電池陰極材料 La0. 8Sr0. 2MnO3, La0. 6Sr0. 4Co0. 2Fe0. 8O3 與其電化學性質之研究. 2014, National Central University.
56. F.H. Taylor, J. Buckeridge, and C.R.A. Catlow, “Screening divalent metals for A-and B-site dopants in LaFeO3”, Chemistry of Materials. 29(19): p. 8147-8157, 2017
57. S. Guo, H. Wu, F. Puleo, and L.F. Liotta, “B-site metal (Pd, Pt, Ag, Cu, Zn, Ni) promoted La1− xSrxCo1− yFeyO3–δ perovskite oxides as cathodes for IT-SOFCs”, Catalysts. 5(1): p. 366-391, 2015
58. W. Jia, Z. Huang, W. Sun, L. Wu, L. Zheng, Y. Wang, J. Huang, X. Yang, M. Lv, and L. Ge, “Flexible A-site doping La0. 6-xMxSr0. 4Co0. 2Fe0. 8O3 (M= Ca, Ba, Bi; x= 0, 0.1, 0.2) as novel cathode material for intermediate-temperature solid oxide fuel cells: A first-principles study and experimental exploration”, Journal of Power Sources. 490: p. 229564, 2021
59. K.-R. Lee, C.-J. Tseng, S.-C. Jang, J.-C. Lin, K.-W. Wang, J.-K. Chang, T.-C. Chen, and S.-W. Lee, “Fabrication of anode-supported thin BCZY electrolyte protonic fuel cells using NiO sintering aid”, International Journal of Hydrogen Energy. 44(42): p. 23784-23792, 2019
60. 葉俊廷, “SOFC 關鍵材料之製備及其應用於刮刀成型技術製備 IT-SOFC 之特性研究”, 臺北科技大學工程科技研究所學位論文: p. 1-130, 2012
61. R. Peng, T. Wu, W. Liu, X. Liu, and G. Meng, “Cathode processes and materials for solid oxide fuel cells with proton conductors as electrolytes”, Journal of Materials Chemistry. 20(30): p. 6218-6225, 2010