| 研究生: |
陳冠涵 Kuan-Han Chen |
|---|---|
| 論文名稱: |
利用數個多重路徑分支負載共振器之多頻帶多工器 Multiband Multiplexers by Using Multipath Stub-Loaded Resonators |
| 指導教授: |
凃文化
Wen-Hua Tu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 多工器 、四頻帶通濾波器 、四工器 |
| 外文關鍵詞: | multiplexer, quad-band bandpass filter, quadruplexer |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文中提出四頻帶雙工器、四頻帶帶通濾波器與八頻帶四工器。多頻多工器使用散佈式耦合饋入技術,使得電路有低負載效應且不需要額外複雜的匹配電路。多重路徑分支負載共振器為本論文設計電路的主軸,每一個多重路徑分支負載共振器會產生兩個操作頻率,操作頻率可以藉由調整共振路徑長度來決定。本文所設計的八頻帶四工器由一條輸入饋入線、四條輸出饋入線、兩組多重路徑分支負載步階式阻抗共振器以及兩組多重路徑分支負載均勻阻抗共振器來實現。利用步階式阻抗與在倍頻時的外部品質因素不匹配的方法來達到推移倍頻與抑制倍頻的產生,實現寬止帶的效果,同時步階式阻抗也有縮小面積的特性。綜合上面所述,此電路具有電路面微小化、頻帶高選擇度與設計的高自由度的特性,此電路面積為0.34λg * 0.19λg,頻帶間的隔離度有32 dB以上的抑制。
In this thesis, the quad-channel diplexer, quad-band bandpass filter and octa-channel quadplexer are presented. These three circuits are using distributed coupling technique to achieve low loading effect and can obtain many channels without complicated matching network. The multipath stub loaded resonators is designed to have two resonant path, and the resonant frequencies can be easily controlled by tuning length for each resonant path in the multipath stub loaded resonators. The octa-channel quadplexer is composed of two set of multipath stub loaded stepped impedance resonators(SIR) and two set of multipath stub loaded uniform impedance resonators (UIR)with one long distribute input feeding line and four output feeding line. UIR structures and un-matching Q-factor at harmonic frequency were used to suppress harmonic, through which widestopband was achieved. And meanwhile UIR structures has characteristic of reduce the size of circuit. In short, the filters have advantages of compact size, high passband selectivity and high design freedom. As a result, the proposed octa-channel quadplexer occupies an exceedingly small circuit size, i.e., 0.34λg by 0.19λg, while still having good isolation better than 32 dB for each channel.
[1] Y.-C. Chiou, C.-Y. Wu, and J.-T. Kuo “New Miniaturized Dual-Mode Dual-Band Ring Resonator Bandpass Filter With Microwave C-Sections,” IEEE Microw. Wireless Compon. Lett., vol. 50, no. 2, pp.67-69, FEB. 2010.
[2] S. Sun, “A Dual-Band Bandpass Filter Using a Single Dual-Mode Ring Resonator,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 6, pp.298-300, JUN. 2011.
[3] C.-H. Kim, and K. Chang, “Independently Controllable Dual-Band Bandpass Filters Using Asymmetric Stepped-Impedance Resonators,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 12, pp.3037-3047, DEC. 2011.
[4] H. Zhu, and A.-M. Abbosh, “Single- and Dual-Band Bandpass Filters Using Coupled Stepped-Impedance Resonators With Embedded Coupled-Lines,” IEEE Microw. Wireless Compon. Lett., vol. 26, no. 9, pp.675-677, SEP. 2016.
[5] C.-Y. Hsu, C.-Y. Chen, and H.-R. Chuang, “A Miniaturized Dual-Band Bandpass Filter Using Embedded Resonators,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 12, pp.658-660, DEC. 2011.
[6] P. Mondal, and M.-K. Mandal, “Design of Dual-Band Bandpass Filters Using Stub-Loaded Open-Loop Resonators,” IEEE Microw. Wireless Compon. Lett., vol. 56, no. 56, pp.150-155, JAN. 2008.
[7] Z.-C. Zhang, Q.-X. Chu, and F.-C. Chen, “Compact Dual-Band Bandpass Filters Using Open-/Short-Circuited Stub-Loaded λ/4 Resonators,” IEEE Microw. Wireless Compon. Lett., vol. 25, no. 10, pp.657-659, OCT. 2015.
[8] Y. Heng, X. Guo, B. Cao, B. Wei, X. Zhang, G. Zhang, and X. Song, “Dual-Band Superconducting Bandpass Filter Using Stub-Loaded Resonators With Controllable Coupling and Feeding Structures,” IEEE Microw. Wireless Compon. Lett., vol. 23, no. 8, pp.400-402, AUG. 2013
[9] X. Wu, F. Wan, and J. Ge, “Stub-Loaded Theory and Its Application to Balanced Dual-Band Bandpass Filter Design,” IEEE Microw. Wireless Compon. Lett., vol. 26, no. 4, pp.231-233, APR. 2016.
[10] C.-Y. Chen, C.-Y. Hsu,, and H.-R. Chuang, “Design of Miniature Planar Dual-Band Filter Using Dual-Feeding Structures and Embedded Resonators,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 12, pp.699-671, DEC. 2006.
[11] C.-Y. Hsu, C.-Y. Chen, and Huey-Ru Chuang, “A Miniaturized Dual-Band Bandpass Filter Using Embedded Resonators,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 12, pp.658-660, DEC. 2011.
[12] H.-W. Wu, Y.-F. Chen,, and Y.-W. Chen, “Multi-Layered Dual-Band Bandpass Filter Using Stub-Loaded Stepped-Impedance and Uniform-Impedance Resonators,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 3, pp.114-116, MAR. 2012.
[13] A. Djaiz, T. A. Denidni, and M. Nedil, “Dual-band filter using multilayer structures and embedded resonators,” Electron. Lett., vol. 43, no. 9, pp. 527–528, Apr. 2007.
[14] C.-I. G. Hsu, C.-H. Lee, and Y.-H. Hsieh, “Tri-Band Bandpass Filter With Sharp Passband Skirts Designed Using Tri-Section SIRs,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 1, pp.19-21, JAN. 2008.
[15] F.-C. Chen, and Q.-X. Chu, “Design of Compact Tri-Band Bandpass Filters Using Assembled Resonators,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 1, pp.165-171, JAN. 2009.
[16] S. Zhang, and L. Zhu, “Compact Tri-Band Bandpass Filter Based on λ/4 Resonators With U-Folded Coupled-Line,” IEEE Microw. Wireless Compon. Lett., vol. 23, no. 5, pp.258-260, MAY. 2013.
[17] X. Lai, C.-H. Liang, H. Di, and B. Wu, “Design of Tri-Band Filter Based on Stub Loaded Resonator and DGS Resonator,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 5, pp.265-267, MAY. 2010.
[18] S.-W. Lan, M.-H. Weng, S.-J. Chang, C.-Y. Hung, and S.-K. Liu, “A Tri-Band Bandpass Filter With Wide Stopband Using Asymmetric Stub-Loaded Resonators,” IEEE Microw. Wireless Compon. Lett., vol. 25, no. 1, pp.19-21, MAY. 2015.
[19] X.-b. Wei, P. Wang, Z.-Q. Xu, J.-X. Liao, L. Jin, and Y. Shi, “Compact Tri-Band Bandpass Filter Using Open Stub Loaded Tri-Section λ/4 Stepped Impedance Resonator,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 8, pp.512-514, AUG. 2014.
[20] H.-W. Wu, and R.-Y. Yang, “A New Quad-Band Bandpass Filter Using Asymmetric Stepped Impedance Resonators,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 4, pp.203-205, APR. 2011.
[21] S.-C. Lin, “Microstrip Dual/Quad-Band Filters With Coupled Lines and Quasi-Lumped Impedance Inverters Based on Parallel-Path Transmission,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 8, pp.1937-1946, AUG. 2011.
[22] W.-H. Tu, and W.-C. Hung, “Microstrip Eight-Channel Diplexer With Wide Stopband,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 11, pp.742-744, NOV. 2014.
[23] W.-H. Tu, W.-C. Hung, and T.-H. Du “Design of Microwave Microstrip Multiband Diplexers for System in Package,” IEEE Microw. Wireless Compon. Lett., vol. 05, no. 4, pp.502-504, APR. 2015.
[24] H.-W. Wu, S.-H. Huang, and Y.-F. Chen “Design of New Quad-Channel Diplexer With Compact Circuit Size,” IEEE Microw. Wireless Compon. Lett., vol. 23, no. 5, pp.240-242, MAY. 2013.
[25] C.-F. Chen, T.-M. Shen, T.-Y. Huang and R.-B. Wu, “Design of Multimode Net-Type Resonators and Their Applications to Filters and Multiplexers,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 4, pp.848-856, DEC. 2011.
[26] M.-L. Chuang, and M.-T. Wu “Microstrip Multiplexer and Switchable Diplexer with Joint T-Shaped Resonators,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 5, pp.309-311, MAY. 2014.
[27] S.-J. Zeng, J.-Y. Wu and W.-H. Tu “Compact and High-Isolation Quadruplexer Using Distributed Coupling Technique,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 4, pp.197-199, APR. 2011.