跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李彥瑾
Yan-Jin Li
論文名稱: 液相沉積NixFe1-xOy在氧化鐵光陽極應用在太陽能產氫
Solution-phase deposition of NixFe1-xOy on hematite photoanode as electocatalyst for application to solar-hydrogen production
指導教授: 曾重仁
Chung-jen Tseng
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 85
中文關鍵詞: 光電化學產氫雷射脈衝沉積法氧化鐵催化劑
外文關鍵詞: Solar hydrogen production, Pulsed laser deposition, Hematite, Electrocatalyst
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 太陽能產氫是有效產氫方式之一。太陽能水分解的理想材料應具有以下性質:適當的能帶邊緣位置,帶隙小,良好的電子和空穴傳輸特性,以及高的化學穩定性。對於赤礦鐵材料載子擴散距離短、導帶位置低於氫還原電位限制了該材料在光電化學催化技術中的發展應用。因此,本研究利用脈衝雷射濺鍍沉積(Pulsed-laser deposition method, PLD)製備氧化鐵奈米薄膜於FTO導電玻璃上成長氧化鐵奈米陣列薄膜,解決氧化鐵載子擴散距離短問題,提升光電流密度;液相沉積(Solution-phase deposition, SPD),在氧化鐵上沉積一層催化劑,改善表面能階位置不合適問題,降低起始電位。
    本研究中,我們成功以脈衝雷射濺鍍沉積製備氧化鐵奈米薄膜,並在薄膜表面以液相沉積的方式沉積NixFe1-xOy作為Fe2O3/SnO2光陽極上的電催化劑。這方法允許我們可控制NixFe1-xOy催化劑覆蓋層的組成和厚度。其中以前驅物鎳鐵含量比為8:2製成之電極在光電流密度電性測試中性質最佳,起始電位為0.85 V (vs. RHE),在1.4 V (vs. RHE)測得的光電流密度值為0.55 mA/cm2。


    Solar hydrogen production is one of the promising methods for hydrogen generation. In photoelectrochemical method, hydrogen is generated by using a water-splitting device composed of a photoanode and a photocathode immersed in electrolyte (KOH, H2SO4, etc). To achieve this goal efficiently, the material of photoelectrodes should have properties of appropriate band edges, small bandgap, great electron (hole) conductivity, high chemical stability and high natural abundance. Hematite has great properties of appropriate bandgap and high chemical stability, but short carrier diffusion distances and conduction band below water reduction level limit its performance. Therefore, we proposed a strategy including optimization of carrier density in hematite photoanode and modification of surface state position using pulsed laser deposition (PLD) and solution-phase deposition (SPD). The optimal samples showed the onset potential of 0.85 V (vs. RHE) and current density of 0.55 mA/cm2 at 1.4 V (vs. RHE).

    中文摘要 I ABSTRACT II 目錄 III 表目錄 VI 圖目錄 VII 第一章、緒論 1 1-1研究背景 1 1-2研究動機 2 第二章、研究背景與動機 4 2-1光電化學水分解 4 2-2半導體能帶觀念 5 2-2-1能帶與能隙 5 2-2-2費米分佈函數 7 2-2-3半導體水溶液界面性質 9 2-3目前常見水分解光陽極材料 15 2-3-1氧化鐵光陽極 17 2-4催化劑 18 2-5脈衝雷射濺鍍沉積法 22 2-6研究目的 23 第三章、實驗方法 24 3-1實驗流程 24 3-2氧化錫與氧化鐵靶材製備 24 3-3基材準備 27 3-4電極製備 28 3-4-1脈衝雷射沉積奈米結構薄膜 28 3-4-2吸附Co(II)離子 30 3-4-3表面蝕刻+催化劑(FeOOH) 30 3-4-4液相沉積NiFeOx薄膜 31 3-5電極封裝 31 3-6奈米結構薄膜特性分析 32 3-6-1場發式電子顯微鏡 32 3-6-2穿透式電子顯微鏡 33 3-7電極效能分析 33 3-7-1開路電位 35 3-7-2光電流密度 35 3-7-3交流阻抗分析 36 3-7-4 Mott-Schottky 37 第四章、結果與討論 39 4-1脈衝雷射濺鍍沉積法製備氧化鐵薄膜研究 39 4-1-1熱處理溫度影響 40 4-1-2 沉積時氣壓對薄膜影響 44 4-1-3 氧化鐵氧化程度的影響 48 4-2吸附CO離子 51 4-3表面蝕刻+催化劑(FeOOH) 52 4-4液相沉積NiXFe1-XOY 53 4-4-1不同Ni:Fe比例溶液沉積薄膜影響 55 4-4-2不同沉積時間對薄膜影響 60 第五章、結果與建議 64 5-1 結論 64 5.2 未來工作建議 66 參考文獻 67

    [1] A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode”, Nature, Vol. 238, pp. 37-38, 1972.
    [2] D. K. Bora, A. Braun and E. C. Constable, ““In rust we trust”. Hematite – the prospective inorganic backbone for artificial photosynthesis”, Energy &Environmental Science, Vol. 6, pp. 407-425, 2013.
    [3] J. Luo, J.Im, M. T. Mayer, M. Schreier, M. K. Nazeeruddin, N-G Park, S. D. Tilley, H. J. Fan and M. Grätzel, “Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts” Science, Vol. 345, pp. 1593-1596, 2014.
    [4] M. Grätzel (Eds.), Photoelectrochemical Hydrogen Production, Springer Science+ Business Media, New York, 2012.
    [5] 劉傳璽、陳進來編著,半導體元件物理與製程理論與實務,五南書局,台灣,2014。
    [6] J. A. Glasscock, “Nanostructured materials for photoelectrochemical hydrogen production using sunlight”, PhD thesis, School of Chemical Sciences and Engineering, University of New South Wales, 2008.
    [7] N. Sato (Eds.), Electrochemistry at Metal and Semiconductor Electrodes, Elsevier, 1998.
    [8] M. F. Weber and M. J. Dignam, “Splitting water with semiconducting photoelectrodes efficiency considerations”, International Journal of Hydrogen Energy, Vol. 11, pp. 225–232, 1986.
    [9] A. B. Murphy, P. R. F. Barnes, L. K. Randeniya, I. C. Plumb, I. E. Grey, M. D. Horne, J. A. Glasscock, “Efficiency of solar water splitting using semiconductor electrodes”, International Journal of Hydrogen Energy, Vol. 31, pp. 1999–2017, 2006.
    [10] J. R. Bolton, S. J. Strickler, J. S. Connolly, “Limiting and realizable efficiencies of solar photolysis of water”, Nature, Vol. 316, pp. 495–500, 1985.
    [11] H. Gerischer, “Electrochemical behavior of semiconductors under illumination”, Journal of The Electrochemical Society, Vol. 113, pp. 1174-1182, 1966.
    [12] M. F. Weber and M. J. Dignam, “Efficiency of splitting water with semiconducting photoelectrodes”, Journal of The Electrochemical Society, Vol. 131, pp. 1258–1265, 1984.
    [13] S. Licht, B. Wang, and S. Mukerji, T. Soga, M. Umeno and H. Tributsch, “Efficient solar water splitting, exemplified by RuO2-catalyzed AlGaAs/Si photoelectrolysis” Journal of Physical Chemistry B, Vol. 104, pp. 8920–8924, 2000.
    [14] W.J. Youngblood, S.H.A. Lee, Y. Kobayashi, E.A. Hernandez-Pagan, P.G. Hoertz, T.A. Moore, A.L. Moore, D. Gust and T.E. Mallouk, “Photoassisted overall water splitting in a visible light-absorbing dye-sensitized photoelectrochemical cell”, Jouranl of the American Chemical Society, Vol. 131, pp. 926-927, 2009.
    [15] M.W. Kanan and D.G. Nocera, “In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+”, Science, Vol. 321, pp. 1072–1075, 2008.
    [16] T. Bak, J. Nowotny, M. Rekas and C. C. Sorrell, “Photoelectrochemical hydrogen generation from water using solar energy”, International Journal of Hydrogen Energy, Vol. 27(10), pp. 991-1022, 2002.
    [17] R. V. D. Krol, Y. Liang and J. Schoonman, “Solar hydrogen production with nanostructured metal oxides”, Journal of Materials Chemistry, Vol. 18, pp. 2311-2320, 2008.
    [18] K. R. Lee, Y. P. Hsu, X. J. K. Chang, S. W. Lee and C. J. Tseng, “Effects of spin speed on the photoelectrochemical properties of Fe2O3”, International Journal of Electrochemical Science, Vol. 9, pp. 7680-7692, 2014.
    [19] Y. P. Hsu, S. W. Lee, J. K. Chang, C. J. Tseng, K. R. Lee and C. H. Wang, “Effects of platinum doping on the photoelectrochemical properties of Fe2O3 electrodes”, International Journal of Electrochemical Science, Vol. 8, pp. 11615-11623, 2013.
    [20] C. J. Tseng, C. H. Wang and K. W. Cheng, “Photoelectrochemical Performance of Gallium-doped AgInS2 Film Electrodes”, Solar Energy Materials and Solar Cells, Vol. 36, pp. 33-42, 2012.
    [21] C. H. Wang, K. W. Cheng and C. J. Tseng, “Photoelectrochemical properties of AgInS2 thin films prepared using electrodeposition”, Solar Energy Materials and Solar Cells, Vol. 95, pp. 453-461, 2011.
    [22] K. L. Hardee and A.J. Bard, “Semiconductor electrodes 5. Application of chemically vapor deposited iron-oxide films to photosensitized electrolysis”, Journal of The Electrochemical Society, Vol. 123, pp. 1024-1026, 1976.
    [23] A. A. Akl, “Optical properties of crystalline and non-crystalline iron oxide thin films deposited by spray pyrolysis”, Applied Surface Science, Vol. 233, pp. 307-319, 2004.
    [24] C.-Y. Chang, C.-H. Wang, C.-J. Tseng, K.W. Cheng, L.W. Hourng, B.T. Tsai, "Self-oriented iron oxide nanorod array thin film for photoelectrochemical hydrogen production," Int. J. Hydrogen Energy, Vol. 37, pp. 13616-13622, 2012.
    [25] M. Momirlan and T. N. Veziroglu, “Current status of hydrogen energy”, Renewable Sustainable Energy, Vol. 6, pp. 141-179, 2002.
    [26] M. P. Dare-Edwards, J. B. Goodenough, A. Hamnett and P. R. Trevellick, “Electrochemistry and photoelectrochemistry of iron(III) oxide”, Journal of the Chemical Society, Faraday Transactions, Vol. 79, pp. 2027-2041,1983.
    [27] R.K. Quinn, R.D. Nasby and R.J. Baughman, “Photoassisted electrolysis of water using single crystal alpha-Fe2O3 anodes”, Materials Research Bulletin, Vol. 11, pp. 1011-1017, 1976.
    [28] K. Itoh and J.O. Bockris, “Stacked thin-film photoelectrode using iron-oxide”, Journal of Applied Physics, Vol. 56, pp. 874, 1984.
    [29] K. Itoh and J.O. Bockris, “Thin-film photoelectrochemistry – iron-oxide”, Journal Electrochemical Society, Vol. 131, 1266-1271, 1984.
    [30] G. Horowitz, “Capacitance voltage measurements and flat-band potential determination on Zr-doped alpha-Fe2O3 single-crystal electrodes”, Journal of Electroanalytical Chemistry, Vol. 159, pp. 421-436, 1983.
    [31] C. Sanchez, K.D. Sieber and G.A. Somorjai, “The photoelectrochemistry of niobium doped α-Fe2O3”, Journal of Electroanalytical Chemistry, Vol. 252, pp. 269-290, 1988.
    [32] M. J. Katz, S. C. Riha, N. C. Jeong, A. B. F. Martinson, O. K. Farha and J. T. Hupp, “Toward solar fuels: Water splitting with sunlight and “rusrt”?”, Coordination Chemistry Reviews, Vol. 256, pp. 2521-2529, 2012.
    [33] R. Liu, Z. Zheng, J. Spurgeon and X. Yang, “Enhanced photoelectrochemical water-splitting performance of semiconductors by surface passivation layers”, Energy & Environmental Science, Vol. 7, pp. 2504-2517, 2014.
    [34] C. Du, X. Yang, M. T. Mayer, H. Hoyt, J. Xie, G. McMahon, G. Bischoping and D. Wang, “Hematite-Based Water Splitting with Low Turn-On Voltages”, Angewandte Chemie International, Vol. 52, pp. 12692-12695, 2013.
    [35] C. G. M. Guio, M. T. Mayer, A. Yella, S. D. Tilly, M. Grätzel and X. Hu, “An Optically Transparent Iron Nickel Oxide Catalyst for Solar Water Splitting”, Journal of The American Chemical Society, Vol. 137, pp. 9927-9936, 2015.
    [36] R. Eason (Eds.), Pulsed laser deposition of thin films, John Wiley & Sons, Inc., Canada, 2007.
    [37] R. Brahimi, B Bellal, Y. Bessekhouad, A. Bouguelia and M. Trari, “Physical properties of CuAlO2 single crystal”, Journal of Crystal Growth, Vol. 310, pp. 4325-4329, 2008.

    QR CODE
    :::