| 研究生: |
張智勝 Chih-Sheng Chang |
|---|---|
| 論文名稱: |
台日共贏合作開發3D IC封裝技術 A Win-win Collaboration between Taiwan and Japan to Co-develop 3D IC Packaging Technologies |
| 指導教授: |
王啓泰
Chi-Tai Wang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 國際經營管理碩士學位學程 International Master of Business Administration Program(IMBA) |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 半導體產業、先進封裝、3D IC、合作策略、台日合作 |
| 外文關鍵詞: | Semiconductor Industry, Advanced Packaging, 3D IC, Collaboration Strategy, Tai wan-Japan Collaboration |
| 相關次數: | 點閱:26 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
先進半導體封裝已成為實現晶片微縮和提升效能的關鍵技術,面對全球高階半導體
技術快速演進,台灣在此領域已取得領先成果,然而未來如果想繼續維持技術優勢,需
依賴關鍵的國際合作夥伴。日本長期以來為台灣半導體產業的重要合作對象,尤其在半
導體材料與設備方面具備深厚實力,, 然而目前多數研究仍聚焦於兩國在邏輯晶片上的合
作,對於雙方在先進封裝領域的合作探討仍顯不足,因此本研究著重於台日兩國在 3D
IC 技術上的合作潛力與發展性。
本研究統整台灣與日本半導體產業之相關文獻,並分析3D封裝技術的關鍵技術與
發展脈絡,進而針對三項核心研究問題進行深入探討:
一、探討台日半導體產業的技術互補性及合作的必要性
二、分析台日半導體產業3D IC技術發展的現況。
研究以2005年至2024年間,台灣與日本於美國專利商標局(USPTO)申請之3D
IC 相關專利為資料來源,並運用Python與Excel進行量化分析。透過t檢定方法驗證雙
方在3D IC技術發展上的成長趨勢,並進一步以專利的國際專利分類(IPC)相似度分析,,
探討雙方的技術重疊程度與合作潛力。研究結果顯示,兩國在近十年間於3D IC技術領
域的專利申請數量顯著增加,顯示該技術已成為雙方關注的策略重點;然而技術相似度
長期維持在低水平,反映出台日雙方具高度技術互補性與合作空間。本研究結果可為未
來台日3D IC技術合作提供實證基礎,亦對政府政策與產業策略制定具參考價值。
Advanced packaging has become a key technology in achieving chip miniaturization and
performance enhancement. In the face of rapid evolution of global high-end semiconductor
technologies, Taiwan has attained a leading position. However, sustaining its technological ad
vantage in the future will require strategic international partnerships. Japan, as a long-standing
partner of Taiwan’s semiconductor industry, possesses strong capabilities in semiconductor’s
materials and equipment technologies. While existing studies have primarily focused on bilat
eral collaboration in logic chip development, there is a notable lack of research on collaboration
in advanced packaging technologies. Therefore, this study focuses on exploring the potential
and development of Taiwan-Japan collaboration in 3D IC.
This research begins by reviewing relevant literature on the semiconductor industries of
Taiwan and Japan, as well as identifying the key technologies and development trends in 3D
packaging. It addresses the following three core research questions:
1.
2.
To analyze the current state of 3D IC technology development in the semiconductor in
dustries of Taiwan and Japan.
To discuss the technological complementarity between Taiwan and Japan's semiconductor
industries and the necessity for collaboration between the two countries.
The study applied data on 3D IC-related patents filed by Taiwanese and Japanese entities
with the United States Patent and Trademark Office (USPTO) from 2005 to 2024. Quantitative
analysis was conducted using Python and Excel. A t-test was applied to examine the growth
trend of 3D IC technology development in both countries. Furthermore, IPC (International Pa
tent Classification) similarity analysis was employed to evaluate the extent of technological
overlap and the potential for collaboration. The results show that the number of 3D IC-related
patent applications from both countries has significantly increased in the past decade, indicating
ii
that this technology has become a strategic focus for both industries. However, the long-term
low level at technological similarity suggests a high degree of technological complementarity,
underscoring the potential for bilateral collaboration. These findings provide empirical evi
dence supporting future Taiwan-Japan collaboration in 3D IC technology and offer valuable
insights for government policy and industry strategy development.
References
1. Allam, Z., Bibri, S. E., & Sharpe, S. A. (2022). The rising impacts of the COVID-19 pan
demic and the Russia–Ukraine war: energy transition, climate justice, global inequality, and
supply chain disruption. Resources, 11(11), 99.
2. Arita, T., & McCann, P. (2002). The location of technological innovations within the Japa
nese semiconductor industry. In The emergence of the knowledge economy: A regional per
spective. Berlin, Heidelberg: Springer Berlin Heidelberg.
3. Baldwin, R. E. (1994). The impact of the 1986 US—Japan semiconductor agreement. Japan
and the World Economy, 6(2), 129-152.
4. Banerjee, K., Souri, S. J., Kapur, P., & Saraswat, K. C. (2001). 3-D ICs: A novel chip design
for improving deep-sub micrometer interconnect performance and systems-on-chip integra
tion. Proceedings of the IEEE, 89(5), 602-633.
5. Bown, C. P. (2020). How the United States marched the semiconductor industry into its
trade war with China. East Asian Economic Review, 24(4), 349-388.
6. Brown, C., Linden, G. (2011). Chips and change: How crisis reshapes the semiconductor
industry. Hong Kong: MIT Press.
7. Chen, Z., Zhang, J., Wang, S., Wong, C. P. (2023). Challenges and prospects for advanced
packaging. Fundamental Research, 4(6), 1455-1458.
8. Chen, K. N., Tu, K. N. (2015). Materials challenges in three-dimensional integrated cir
cuits. Mrs. Bulletin, 40(3), 219-222.
9. Chang, P. L., & Tsai, C. T. (2000). Evolution of technology development strategies for Tai
wan's semiconductor industry: formation of research consortia. Industry and Innovation,
7(2), 185-197.
10. Cheng, Y. K. (2023). Embracing the Full Power of TSMC 3DFabric™ Design: Challenges
and Solutions. In 2023 International VLSI Symposium on Technology, Systems and Appli
cations. IEEE, 1-1.
48
11. Child, J., Faulkner, D., Tallman, S., & Hsieh, L. (2019). Cooperative strategy: Managing
alliances and networks. Oxford: Oxford University Press.
12. Combs, K. L. (1992). Cost sharing vs. multiple research projects in cooperative R&D. Eco
nomics Letters, 39(3), 353-357.
13. Coughlin, T. (2020). Impact of COVID-19 on the consumer electronics market. IEEE Con
sumer Electronics Magazine, 10(1), 58-59.
14. Danilin, I., & Selyanin, Y. (2023). Race for Nanometers: American Policy toward Taiwan
and Republic of Korea. World Economy and International Relations, 67(11), 80-88.
15. Fukuda, K., Watanabe, M., Korenaga, M., & Seimaru, K. (2008). The progress of the stra
tegic technology roadmap of METI (Ministry of Economy, Trade and Industry of Japan):
Practical business cases and sustainable manufacturing perspective. In PICMET'08-2008
Portland International Conference on Management of Engineering & Technology IEEE,
2102-2104.
16. Goodman, S., Verwey, J., & Kim, D. (2019). The South Korea-Japan trade dispute in context:
Semiconductor manufacturing, chemicals, and concentrated supply chains. Chemicals, and
Concentrated Supply Chains.
17. Hamaguchi, C., Hamaguchi, C. (2010). Basic semiconductor physics. Berlin: Springer, 9,
443-510.
18. Hu, Y. C., Liang, Y. M., Hu, H. P., Tan, C. Y., Shen, C. T., Lee, C. H., Hou, S. Y. (2023).
CoWoS architecture evolution for next generation HPC on 2.5 D system in package. 2023
IEEE 73rd Electronic Components and Technology Conference, 1022-1026.
19. Huggins, R., Johnston, A., Munday, M., & Xu, C. (2023). Competition, open innovation,
and growth challenges in the semiconductor industry: the case of Europe’s clusters. Science
and Public Policy, 50(3), 531-547.
20. Harrison, J. S., Hitt, M. A., Hoskisson, R. E., & Ireland, R. D. (2001). Resource comple
mentarity in business combinations: Extending the logic to organizational alliances. Journal
49
of management, 27(6), 679-690.
21. Ieong, M. (2018, June). Semiconductor Industry Driven by Applications: Artificial Intelli
gence and Internet-of-Things. In 2018 IEEE International Conference on Electron Devices
and Solid-State Circuits (EDSSC). IEEE, 1-2.
22. Industrial Technology Research Institute. (2025). https://www.itri.org.tw/english/ (accessed:
2025/2/15).
23. Kamakura, N. (2022). From globalizing to regionalizing to reshoring value chains? The
case of Japan’s semiconductor industry. Cambridge Journal of Regions, Economy and So
ciety, 15(2), 261-277.
24. Keller, W. W., & Pauly, L. W. (2001). Crisis and adaptation in East Asian innovation systems:
semiconductors in Taiwan and South Korea.
25. Keser, B., Amrine, C., Duong, T., Hayes, S., Leal, G., Lytle, W., ... & Wenzel, R. (2008).
Advanced packaging: The redistributed chip package. IEEE transactions on advanced pack
aging, 31(1), 39-43.
26. Khan, S. M., Mann, A., Peterson, D. (2021). The semiconductor supply chain: Assessing
national competitiveness. Center for Security and Emerging Technology, 8(8), 1-98.
27. Kilby, J. S. (1976). Invention of the integrated circuit. IEEE Transactions on Electron De
vices, 23(7), 648-654.
28. Kimura, Y. (1990). Sustainable competitive advantages and market share performances of
firms: the case of the Japanese semiconductor industry. International Journal of Industrial
Organization, 8(1), 73-92.
29. Knickerbocker, J. U., Budd, R., Dang, B., Chen, Q., Colgan, E., Hung, L. W., Wen, B.
(2018). Heterogeneous integration technology demonstrations for future healthcare, IoT,
and AI computing solutions. 2018 IEEE 68th Electronic Components and Technology Con
ference, 1519-1528.
50
30. Kühne, S., & Hierold, C. (2011). Wafer-level packaging and direct interconnection technol
ogy based on hybrid bonding and through silicon vias. Journal of Micromechanics and Mi
croengineering, 21(8), 085032.
31. Lau, J. H. (2022). Recent advances and trends in advanced packaging. IEEE Transactions
on Components, Packaging and Manufacturing Technology, 12(2), 228-252.
32. Lehoux, N., D’Amours, S., & Langevin, A. (2014). Inter-firm collaborations and supply
chain coordination: review of key elements and case study. Production Planning & Control,
25(10), 858-872.
33. Lim, T. W. (2023). Japanese semiconductor industry’s collaboration with Taiwan Semicon
ductor Manufacturing Company. East Asian Policy, 15(1), 47-59.
34. Liu, P., Wang, J., Tong, L., & Tao, Y. (2014). Advances in the fabrication processes and
applications of wafer level packaging. Journal of Electronic Packaging, 136(2), 024002.
35. Liu, L., Guo, X., Lee, C. (2021). Promoting smart cities into the 5G era with multi-field
Internet of Things (IoT) applications powered by advanced mechanical energy harvest
ers. Nano Energy, 88, 106304.
36. Li, M., & Nguyen, B. (2017). When will firms share information and collaborate to achieve
innovation? A review of collaboration strategies. The Bottom Line, 30(1), 65-86.
37. Luo, Y., Van Assche, A. (2023). The rise of techno-geopolitical uncertainty: Implications of
the United States CHIPS and Science Act. Journal of international business studies, 54(8),
1423-1440.
38. Momoko, K. (2022). Taiwan’s TSMC as a focal point of US-China high-tech conflict. Asia
Pacific Review, 29(1), 5-12.
39. Schaller, R. R. (1997). Moore's law: past, present and future. IEEE spectrum, 34(6), 52-59.
40. Shintaku, J., & Park, Y. (2012). Supply chain network of IT industry in East Asia: From the
viewpoint of Japan’s core competence. University of Tokyo.
51
41. Shivakumar, S., Wessner, C., & Howell, T. (2023). Japan seeks to revitalize its semiconduc
tor industry. Center for Strategic & International Studies.
42. Song, M. (2011). A dynamic analysis of cooperative research in the semiconductor industry.
International Economic Review, 52(4), 1157-1177.
43. Taiwan Semiconductor Manufacturing Company Limited. (2025).
https://www.tsmc.com/englishd. (accessed: 2024/12/5).
44. Tu, K. N. (2011). Reliability challenges in 3D IC packaging technology. Microelectronics
Reliability, 51(3), 517-523.
45. Todo, Y., & Inoue, H. (2021). Geographic diversification of the supply chains of Japanese
firms. Asian Economic Policy Review, 16 (2), 304-322.
46. Tung, C. Y. (2024). Taiwan and the global semiconductor supply chain. ROC, Taiwan site,
Taiwan Representative Office in Singapore.
47. Verwey, J. (2022). Re-Shoring Advanced Semiconductor Packaging. Center for Security
and Emerging Technology. https://cset.georgetown.edu/publication/re-shoring-advanced
semiconductor-packaging/ (accessed: 2025/3/4).
48. Wang, C. H., Lin, H. C. (2021). Competitive substitution and technological diffusion for
semiconductor foundry firms. Advanced Engineering Informatics, 48, 101254.
49. Wang, C. T., Chiu, C. S. (2014). Competitive strategies for Taiwan's semiconductor industry
in a new world economy. Technology in Society, 36, 60-73.
50. Wang, J., Wu, H., Chen, Y. (2020). Made in China 2025 and manufacturing strategy deci
sions with reverse QFD. International Journal of Production Economics, 224, 107539.
51. Yang, J., Askari, H., Forrer, J., & Teegen, H. (2004). US economic sanctions against China:
Who gets hurt? World Economy, 27(7), 1047-1081.
52. Yole Group. (2025). https://www.yolegroup.com/ (accessed: 2025/ 1/ 3).
53. Zhou, B. (2023). The impact of the US Chip Act and the Chip4 Alliance, and China how to
respond it. Transactions on Social Science, Education and Humanities Research, 1, 407-410.
52
54. Chesbrough, H. W. (2003). Open innovation: The new imperative for creating and profiting
from technology. Harvard Business Press.
55. Godin, B. (2008). In the shadow of Schumpeter: W. Rupert Maclaurin and the study of
technological innovation. Minerva, 46(3), 343-360.
56. Kim, J., & Lee, S. (2015). Patent databases for innovation studies: A comparative analysis
of USPTO, EPO, JPO and KIPO. Technological Forecasting and Social Change, 92, 332
345.
57. Wong, C. Y., Yeung, H. W. C., Huang, S., Song, J., & Lee, K. (2024). Geopolitics and the
changing landscape of global value chains and competition in the global semiconductor
industry: Rivalry and catch-up in chip manufacturing in East Asia. Technological Forecast
ing and Social Change, 209, 123749.
58. Verma, V., & Aggarwal, R. K. (2020). A comparative analysis of similarity measures to the
Jaccard index in collaborative recommendations: empirical and theoretical perspective. So
cial Network Analysis and Mining, 10(1), 43.
59. Carroll, R. J., & Schneider, H. (1985). A note on Levene's tests for equality of vari
ances. Statistics & probability letters, 3(4), 191-194.
60. Lin, B. W., Chen, C. J., & Wu, H. L. (2006). Patent portfolio diversity, technology strategy,
and firm value. IEEE transactions on engineering management, 53(1), 17-26.
61. 蕭宏. (2024). 半導體製程技術導論. 全華圖書股份有限公司.